Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Images are difficult to classify and annotate but the availability of digital image databases creates a constant demand for tools that automatically analyze image content and describe it with either a category or a set of variables. Ultrasound Imaging is very popular and is widely used to see the internal organ(s) condition of the patient. The main target of this research is to develop a robust image processing techniques for a better and more accurate medical image retrieval and categorization. This paper looks at an alternative to feature extraction for image classification such as image resizing technique. A new mean for image resizing using wavelet transform is proposed. Results, using real medical images, have shown the effectiveness of the proposed technique for classification task comparing to bi-cubic interpolation and feature extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao, S., Peng, Y., Guo, H., Liu, W., Gao, T., Xu, Y., and Tang, X., Texture analysis and classification of ultrasound liver images. Biomed. Mater. Eng. 24(1):1209–1216, 2014.

  2. Wang, W., Qin, J., Zhu, L., Ni, D., Chui, Y.-P., and Heng, P.-A., Detection and measurement of fetal abdominal contour in ultrasound images via local phase information and iterative randomized Hough transform. Biomed. Mater. Eng. 24(1):1261–1267, 2014.

  3. Noh, D.K., Lee, J.J., and You, J.H., Diaphragm breathing movement measurement using ultrasound and radio-graphic imaging: A concurrent validity. Biomed. Mater. Eng. 24(1):947–952, 2014.

  4. Yang, H.S., Yoo, J.W., Lee, B.A., Choi, C.K., and You, C., KInter-tester and intra-tester reliability of ultra-sound imaging measurements of abdominal muscles in adolescents with and without idiopathic scoliosis: A case-controlled study. Biomed. Mater. Eng. 24(1):453–458, 2014.

  5. Afsar Minhas, F.A., Sabih, D., and Hussain, M., Automated classification of liver disorders using ultrasound images. J. Med. Syst. 36(5):3163–3172, 2012.

    Article  Google Scholar 

  6. Işik, H., and Arslan, S., An artificial neural network classification approach for use the ultrasound in physiotherapy. J. Med. Syst. 35(6):1333–1341, 2011.

    Article  PubMed  Google Scholar 

  7. Singh, M., Singh, S., and Gupta, S., An information fusion based method for liver classification using texture analysis of ultrasound images. Inf. Fusion. 19:91–96, 2014.

    Article  Google Scholar 

  8. Ma, H.-Y., Zhou, Z., Wu, S., and Wan, Y.-L., A computer-aided diagnosis scheme for detection of fatty liver in vivo based on ultrasound kurtosis imaging. J. Med. Syst. 40(1), 2016.

  9. Marée, R., Geurts, P., Piater, J., and Wehenkel, L., Biomedical image classification with random subwindows and decision trees. In Proceeding of ICCV workshop on Computer Vision for Biomedical Image Applications (CVIBA 2005). Lect. Notes Comput. Sci. 3765, 220–229.

  10. Recknagel, R.-J., Kowarschik, R., and Notni, G., High-resolution defect detection and noise reduction using wavelet methods for surface measurement. J. Opt. A Pure Appl. Opt. 2(6):538, 2000.

    Article  Google Scholar 

  11. Grgic, S., Grgic, M., and Zovko-Cihlar, B., Performance analysis of image compression using wavelets. IEEE Trans. Ind. Electron. 48(3):682–695, 2001.

    Article  Google Scholar 

  12. Ardestani, M.M., Chen, Z., Wang, L., Lian, Q., Liu, Y., He, J., Li, D., and Jin, Z., Feed forward artificial neural network to predict contact force at medial knee joint: Application to gait modification. Neurocomputing. 139(2):114–129, 2014.

    Article  Google Scholar 

  13. Srinivas, Y., Stanley Raj, A., Hudson Oliver, D., Muthuraj, D., and Chandrasekar, N., A robust behavior of Feed Forward Back propagation algorithm of Artificial Neural Networks in the application of vertical electrical sounding data inversion. Geosci. Front. 3(5):729–736, 2012.

    Article  Google Scholar 

  14. Zhang, L., and Subbarayan, G., An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I: Training procedures. Comput. Methods Appl. Mech. Eng. 191(25–26):2873–2886, 2002.

    Article  Google Scholar 

  15. Lu, J., Zhao, J., and Cao, F., Extended feed forward neural networks with random weights for face recognition. Neurocomputing. 136(20):96–102, 2014.

    Article  Google Scholar 

  16. Noble, J.A., and Boukerroui, D., Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging. 25(8):987–1010, 2006.

    Article  PubMed  Google Scholar 

  17. Hareendranathan, A.R., Mabee, M., Punithakumar, K., Noga, M., and Jaremko, J.L., Toward automated classification of acetabular shape in ultrasound for diagnosis of DDH: Contour alpha angle and the rounding index. Comput. Methods Prog. Biomed. 129:89–98, 2016.

    Article  Google Scholar 

  18. Shi, J., Zhou, S., Liu, X., Zhang, Q., Lu, M., and Wang, T., Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing. 194(19):87–94, 2016.

    Article  Google Scholar 

  19. Hou, X., Zhu, P., and Ma, Y., Classification of cardiac ultrasound image sequences based on sparse representation. J. Softw. 9(9):2309–2314, 2014.

    Article  Google Scholar 

  20. Kalyan, K., Jakhia, B., Lele, R.D., Joshi, M., and Chowdhary, A., Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images. Adv. Bioinforma. 2014:708279, 2014. doi:10.1155/2014/708279.14 pages

    Article  Google Scholar 

  21. Luo, S., Li, X., and Li, J., Review on the methods of automatic liver segmentation from abdominal images. J. Comput. Commun. 2(2):1–7, 2014.

    Article  CAS  Google Scholar 

  22. Asamwar, R.S., Bhurchandi, K.M., and Gandhi, A.S., Interpolation of images using discrete wavelet transform to simulate image resizing as in human vision. Int. J. Autom. Comput. 7(1):9–16, 2010.

    Article  Google Scholar 

  23. Deng, C., Lin, W., and Cai, J., Content-based image compression for arbitrary-resolution display devices. IEEE Trans. Multimed. 14(4):1127–1139, 2012.

    Article  Google Scholar 

  24. Finsberg, H. N., Wavelet techniques in medical imaging. classification of ultrasound images using the windowed scattering transform. Available Online: http://www.diva-portal.org/smash/get/diva2:733307/FULLTEXT01.pdf

  25. Han, J.-W., Choi, K.-S., Wang, T.-S., Cheon, S.-H., and Ko, S.-J. Wavelet based seam carving for content-aware image resizing. 16th IEEE International Conference on Image Processing (ICIP), pp 345–348, Cairo, 2009.

  26. Das, S., Garg, S., and Sahoo, G., Comparison of content based image retrieval systems using wavelet and curvelet transform. Int. J. Multimed. Appl. 4(4):137–154, 2012.

    Google Scholar 

  27. Halkias, X.C., and Maragos, P., Analysis of Kirlian images: Feature extraction and segmentation. In Proceeding of IEEE International Conference on Signal Processing, pp 765–768, Beijing, China, 2004.

  28. Anoop Suraj, A., Francis, M., Kavya, T.S., and Nirmal, T.M., Discrete wavelet transform based image fusion and de-noising in FPGA. J. Electr. Syst. Inf. Technol. 1(1):72–81, 2014.

    Google Scholar 

  29. Etehadtavakol, M., Ng, E.Y.K., Chandran, V., and Rabbani, H., Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms. Infrared Phys. Technol. 61:274–286, 2013.

    Article  Google Scholar 

  30. Wang, X.-Y., Yang, H.-Y., and Fu, Z.-K., A New Wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine. Expert Syst. Appl. 37(10):7040–7049, 2010.

    Article  Google Scholar 

  31. Sun, Y., and Cheng, A.C., Machine learning on-a-chip: A high-performance low-power reusable neuron architecture for artificial neural networks in ECG classifications. Comput. Biol. Med. 42(7):751–757, 2012.

    Article  PubMed  Google Scholar 

  32. Botzheim, J., and Földesi, P., Novel calculation of fuzzy exponent in the sigmoid functions for fuzzy neural networks. Neurocomputing. 129(10):458–466, 2014.

    Article  Google Scholar 

  33. Nambiar, V.P., Khalil-Hani, M., Sahnoun, R., and Marsono, M.N., Hardware implementation of evolvable block-based neural networks utilizing a cost efficient sigmoid-like activation function. Neurocomputing. 140(22):228–241, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Manzoor.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, U., Nefti, S. & Ferdinando, M. Investigating the Effectiveness of Wavelet Approximations in Resizing Images for Ultrasound Image Classification. J Med Syst 40, 221 (2016). https://doi.org/10.1007/s10916-016-0573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0573-7

Keywords