Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Predicting Major Adverse Kidney Events among Critically Ill Adults Using the Electronic Health Record

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Prediction of major adverse kidney events in critically ill patients may help target therapy, allow risk adjustment, and facilitate the conduct of clinical trials. In a cohort comprised of all critically ill adults admitted to five intensive care units at a single tertiary care center over one year, we developed a logistic regression model for the outcome of Major Adverse Kidney Events within 30 days (MAKE30), the composite of persistent renal dysfunction, new renal replacement therapy (RRT), and in-hospital mortality. Proposed risk factors for the MAKE30 outcome were selected a priori and included age, race, gender, University Health System Consortium (UHC) expected mortality, baseline creatinine, volume of isotonic crystalloid fluid received in the prior 24 h, admission service, intensive care unit (ICU), source of admission, mechanical ventilation or receipt of vasopressors within 24 h of ICU admission, renal replacement therapy prior to ICU admission, acute kidney injury, chronic kidney disease as defined by baseline creatinine value, and renal failure as defined by the Elixhauser index. Among 10,983 patients in the study population, 1489 patients (13.6%) met the MAKE30 endpoint. The strongest independent predictors of MAKE30 were UHC expected mortality (OR 2.32 [95%CI 2.06–2.61]) and presence of acute kidney injury at ICU admission (OR 4.98 [95%CI 4.12–6.03]). The model had strong predictive properties including excellent discrimination with a bootstrap-corrected area-under-the-curve (AUC) of 0.903, and high precision of calibration with a mean absolute error prediction of 1.7%. The MAKE30 composite outcome can be reliably predicted from factors present within 24 h of ICU admission using data derived from the electronic health record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S.M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C.M., Chawla, L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, M.N., Gunnerson, K.J., Haase, M., Hackett, J., Honore, P.M., Hoste, E.A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J.L., Laskowitz, D.T., Lissauer, M.E., Marx, G., McCullough, P.A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw, A.D., Shi, J., Sprague, A.M., Vincent, J.-L., Vinsonneau, C., Wagner, L., Walker, M.G., Wilkerson, R.G., Zacharowski, K., and Kellum, J.A., Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care. 17:R25, 2013. https://doi.org/10.1186/cc12503.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bellomo, R., Kellum, J.A., and Ronco, C., Acute kidney injury. Lancet. 380:756–766, 2012. https://doi.org/10.1016/S0140-6736(11)61454-2.

    Article  PubMed  Google Scholar 

  3. Uchino, S., Kellum, J.A., Bellomo, R., Doig, G.S., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Ronco, C., and for the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators, Acute Renal Failure in Critically Ill Patients: A Multinational, Multicenter Study. JAMA. 294:813–818, 2005. https://doi.org/10.1001/jama.294.7.813.

    Article  CAS  PubMed  Google Scholar 

  4. Cole, L., Bellomo, R., Silvester, W., Reeves, J.H., and for the Victorian Severe Acute Renal Failure Study Group, A Prospective, Multicenter Study of the Epidemiology, Management, and Outcome of Severe Acute Renal Failure in a “Closed” ICU System. Am. J. Respir. Crit. Care Med. 162:191–196, 2000. https://doi.org/10.1164/ajrccm.162.1.9907016.

    Article  CAS  PubMed  Google Scholar 

  5. Bellomo, R., Ronco, C., Kellum, J.A., Mehta, R.L., and Palevsky, P., Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care. 8:R204, 2004. https://doi.org/10.1186/cc2872.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C., Warnock, D.G., and Levin, A., Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care. 11:R31, 2007. https://doi.org/10.1186/cc5713.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group, KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl 2:1–138, 2012. https://doi.org/10.1038/kisup.2012.1.

  8. Palevsky, P.M., Molitoris, B.A., Okusa, M.D., Levin, A., Waikar, S.S., Wald, R., Chertow, G.M., Murray, P.T., Parikh, C.R., Shaw, A.D., Go, A.S., Faubel, S.G., Kellum, J.A., Chinchilli, V.M., Liu, K.D., Cheung, A.K., Weisbord, S.D., Chawla, L.S., Kaufman, J.S., Devarajan, P., Toto, R.M., Hsu, C., Greene, T., Mehta, R.L., Stokes, J.B., Thompson, A.M., Thompson, B.T., Westenfelder, C.S., Tumlin, J.A., Warnock, D.G., Shah, S.V., Xie, Y., Duggan, E.G., Kimmel, P.L., and Star, R.A., Design of Clinical Trials in Acute Kidney Injury: Report from an NIDDK Workshop on Trial Methodology. Clin. J. Am. Soc. Nephrol. 7:844–850, 2012. https://doi.org/10.2215/CJN.12791211.

    Article  PubMed  Google Scholar 

  9. Stone, G.W., Maehara, A., Lansky, A.J., de Bruyne, B., Cristea, E., Mintz, G.S., Mehran, R., McPherson, J., Farhat, N., Marso, S.P., Parise, H., Templin, B., White, R., Zhang, Z., and Serruys, P.W., A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 364:226–235, 2011. https://doi.org/10.1056/NEJMoa1002358.

    Article  CAS  PubMed  Google Scholar 

  10. Shaw A (2011) Models of preventable disease: contrast-induced nephropathy and cardiac surgery-associated acute kidney injury. In: Controv. Acute Kidney Inj. Karger Publishers, pp 156–162

  11. Bentley, M.L., Corwin, H.L., and Dasta, J., Drug-induced acute kidney injury in the critically ill adult: Recognition and prevention strategies. Crit. Care Med. 38:S169–S174, 2010. https://doi.org/10.1097/CCM.0b013e3181de0c60.

    Article  CAS  PubMed  Google Scholar 

  12. Aspelin, P., Aubry, P., Fransson, S.-G., Strasser, R., Willenbrock, R., and Berg, K.J., Nephrotoxic Effects in High-Risk Patients Undergoing Angiography. N. Engl. J. Med. 348:491–499, 2003. https://doi.org/10.1056/NEJMoa021833.

    Article  CAS  PubMed  Google Scholar 

  13. Goligher, E.C., Amato, M.B.P., and Slutsky, A.S., Applying Precision Medicine to Trial Design Using Physiology: Extracorporeal CO2 Removal for ARDS. Am. J. Respir. Crit. Care Med., 2017. https://doi.org/10.1164/rccm.201701-0248CP.

  14. Iwashyna, T.J., Burke, J.F., Sussman, J.B., Prescott, H.C., Hayward, R.A., and Angus, D.C., Implications of Heterogeneity of Treatment Effect for Reporting and Analysis of Randomized Trials in Critical Care. Am. J. Respir. Crit. Care Med. 192:1045–1051, 2015. https://doi.org/10.1164/rccm.201411-2125CP.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Semler, M.W., Rice, T.W., Shaw, A.D., Siew, E.D., Self, W.H., Kumar, A.B., Byrne, D.W., Ehrenfeld, J.M., and Wanderer, J.P., Identification of Major Adverse Kidney Events Within the Electronic Health Record. J. Med. Syst., 2016. https://doi.org/10.1007/s10916-016-0528-z.

  16. Elixhauser, A., Steiner, C., Harris, D.R., and Coffey, R.M., Comorbidity Measures for Use with Administrative Data. Med. Care. 36:8–27, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Quan, H., Sundararajan, V., Halfon, P., Fong, A., Burnand, B., Luthi, J., Saunders, L.D., Beck, C.A., Feasby, T.E., and Ghali, W.A., Coding Algorithms for Defining Comorbidities in Icd-9-cm and Icd-10 Administrative Data. Med. Care. 43:1130–1139, 2005. https://doi.org/10.1097/01.mlr.0000182534.19832.83.

    Article  PubMed  Google Scholar 

  18. Semler, M.W., Wanderer, J.P., Ehrenfeld, J.M., Stollings, J.L., Self, W.H., Siew, E.D., Wang, L., Byrne, D.W., Shaw, A.D., Bernard, G.R., Rice, T.W., Bernard, G.R., Semler, M.W., Noto, M.J., Rice, T.W., Byrne, D.W., Domenico, H.J., Wang, L., Wanderer, J.P., Ehrenfeld, J.M., Shaw, A.D., Hernandez, A., Kumar, A.B., Self, W.H., Siew, E.D., Dunlap, D.F., Stollings, J.L., Sullivan, M., Knostman, M., Mulherin, D.P., Hargrove, F.R., Janz, D.R., and Strawbridge, S., Balanced Crystalloids versus Saline in the Intensive Care Unit. The SALT Randomized Trial. Am. J. Respir. Crit. Care Med. 195:1362–1372, 2017. https://doi.org/10.1164/rccm.201607-1345OC.

    Article  PubMed  Google Scholar 

  19. Závada, J., Hoste, E., Cartin-Ceba, R., Calzavacca, P., Gajic, O., Clermont, G., Bellomo, R., and Kellum, J.A., A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol. Dial. Transplant. 25:3911–3918, 2010. https://doi.org/10.1093/ndt/gfp766.

    Article  PubMed  Google Scholar 

  20. Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Castro, A.F., Feldman, H.I., Kusek, J.W., Eggers, P., Van Lente, F., Greene, T., Coresh, J., and for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 150:604, 2009. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malhotra, R., Kashani, K.B., Macedo, E., Kim, J., Bouchard, J., Wynn, S., Li, G., Ohno-Machado, L., and Mehta, R., A risk prediction score for acute kidney injury in the intensive care unit. Nephrol. Dial. Transplant. 32:814–822, 2017. https://doi.org/10.1093/ndt/gfx026.

    Article  PubMed  Google Scholar 

  22. Ishani, A., Xue, J.L., Himmelfarb, J., Eggers, P.W., Kimmel, P.L., Molitoris, B.A., and Collins, A.J., Acute Kidney Injury Increases Risk of ESRD among Elderly. J. Am. Soc. Nephrol. 20:223–228, 2009. https://doi.org/10.1681/ASN.2007080837.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoste, E.A.J., Bagshaw, S.M., Bellomo, R., Cely, C.M., Colman, R., Cruz, D.N., Edipidis, K., Forni, L.G., Gomersall, C.D., Govil, D., Honoré, P.M., Joannes-Boyau, O., Joannidis, M., Korhonen, A.-M., Lavrentieva, A., Mehta, R.L., Palevsky, P., Roessler, E., Ronco, C., Uchino, S., Vazquez, J.A., Andrade, E.V., Webb, S., and Kellum, J.A., Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41:1411–1423, 2015. https://doi.org/10.1007/s00134-015-3934-7.

    Article  PubMed  Google Scholar 

  24. Xue, J.L., Daniels, F., Star, R.A., Kimmel, P.L., Eggers, P.W., Molitoris, B.A., Himmelfarb, J., and Collins, A.J., Incidence and Mortality of Acute Renal Failure in Medicare Beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17:1135–1142, 2006. https://doi.org/10.1681/ASN.2005060668.

    Article  PubMed  Google Scholar 

  25. Liaño, F., Pascual, J., and The Madrid Acute Renal Failure Study Group, Epidemiology of acute renal failure: A prospective, multicenter, community-based study. Kidney Int. 50:811–818, 1996. https://doi.org/10.1038/ki.1996.380.

    Article  PubMed  Google Scholar 

  26. Harrell, F.E., Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, Second edn. Springer, New York, 2015.

    Book  Google Scholar 

Download references

Funding

Biostatistical support was provided by the Vanderbilt Institute for Clinical and Translational Research (UL1 TR000445 from NCATS/NIH). M.W.S. was supported by a National Heart, Lung, and Blood Institute (NHLBI) T32 award (HL087738 09) and K12 award (K12HL133117). The funding institutions had no role in (1) conception, design, or conduct of the study, (2) collection, management, analysis, interpretation, or presentation of the data, or (3) preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. McKown.

Ethics declarations

Conflicts of Interest

The authors declare no potential conflicts of interest.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Electronic supplementary material

ESM 1

(DOCX 3036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKown, A.C., Wang, L., Wanderer, J.P. et al. Predicting Major Adverse Kidney Events among Critically Ill Adults Using the Electronic Health Record. J Med Syst 41, 156 (2017). https://doi.org/10.1007/s10916-017-0806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0806-4

Keywords