Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crack Detection in Concrete Parts Using Vibrothermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This study investigates the use of vibrothermography to detect cracks in concrete parts, developing acoustic excitation devices (sonic and ultrasonic and low- and high-power excitation devices) and examining the influences of excitation frequency, power, and pressure on the ability to detect cracks. Experimental results demonstrate that this inspection technique can suitably detect concrete cracks: Ultrasound at frequencies from 20 to 100 kHz could be used to excite concrete cracks with notable temperature rise; coarse aggregates in concrete do not interfere with the ability to detect cracks; high-power ultrasound enhances crack detection though intense scattering of attenuation that could be induced by coarse aggregates. Moreover, the stimulus horn designed as part of this study can input ultrasound at high power into concrete parts without damaging the contact surface, while the custom-made pressure loading sleeve can steadily exert force on the transducer during excitation; the optimal force exerted on KMD ultrasonic transducers with a rated power of 50 W is ~ 1500 N, which can make the transducer output enough power to detect cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Renshaw, J., Chen, J.C., Holland, S.D., Thompson, R.B.: The sources of heat generation in vibrothermography. NDT and E Int. 44(8), 736–739 (2011). https://doi.org/10.1016/j.ndteint.2011.07.012

    Article  Google Scholar 

  2. Khmelev, V.N., Barsukov, R.V., Slivin, A.N., Tchyganok, S.N.: System of phase-locked-loop frequency control of ultrasonic generators. In: Proceedings 2nd Annual Siberian Russian Student Workshop on Electron Devices and Materials (2001) https://doi.org/10.1109/SREDM.2001.939147

  3. Cho, J.W., Seo, Y.-C., Jung, S.-H., Jung, H.-K.: Defect detection within a pipe using ultrasound excited thermography. Nucl. Eng. Technol. 39(5), 637–646 (2007). https://doi.org/10.5516/NET.2007.39.5.637

    Article  Google Scholar 

  4. Mian, A., Han, X., Islam, S., Newaz, G.: Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique. Compos. Sci. Technol. 64(5), 657–666 (2004). https://doi.org/10.1016/j.compscitech.2003.07.005

    Article  Google Scholar 

  5. Guo, X., Vavilov, V.: Crack detection in aluminum parts by using ultrasound-excited infrared thermography. Infrared Phys. Technol. 61, 149–156 (2013). https://doi.org/10.1016/j.infrared.2013.08.003

    Article  Google Scholar 

  6. Plum, R., Ummenhofer, T.: Use of ultrasound excited thermography applied to massive steel components emerging crack detecting methodology. J. Bridge Eng. 18(6), 455–463 (2013). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000355

    Article  Google Scholar 

  7. Piau, J.-M., Bendada, A., Maldague, X., Legoux, J.-G.: Nondestructive testing of open microscopic cracks in plasma-sprayed-coatings using ultrasound excited vibrothermography. Nondestruct. Test. Eval. 23(2), 109–120 (2008). https://doi.org/10.1080/10589750701775817

    Article  Google Scholar 

  8. De Belie, N., De Muynck, W.: Crack repair in concrete using biodeposition. In: Proceedings of the 2nd International Conference ov Concrete Repair, Rehabilitation and Retrofitting, pp. 291–292 (2008)

  9. Wan, K.T., Leung, C.K.Y.: Fiber optic sensor for the monitoring of mixed mode cracks in structures. Sens. Actuators A 135(2), 370–380 (2007). https://doi.org/10.1016/j.sna.2006.08.002

    Article  Google Scholar 

  10. Philippidis, T.P., Aggelis, D.G.: Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43(7), 584–595 (2005). https://doi.org/10.1016/j.ultras.2004.12.001

    Article  Google Scholar 

  11. Chaix, J.F., Garnier, V., Corneloup, G.: Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation. Ultrasonics 44(2), 200–210 (2006). https://doi.org/10.1016/j.ultras.2005.11.002

    Article  Google Scholar 

  12. Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2(4), 512–537 (1961). https://doi.org/10.1063/1.1703737

    Article  MathSciNet  MATH  Google Scholar 

  13. Homma, C., Rothenfusser, M., Baumann, J., Shannon, R.: Study of the heat generation mechanism in acoustic thermography. Proc. AIP Conf. 820, 566 (2006). https://doi.org/10.1063/1.2184578

    Article  Google Scholar 

  14. Umar, M.Z., Vavilov, V., Abdullah, H., Ariffin, A.K.: Ultrasonic infrared thermography in non-destructive testing: a review. Rus. J. Nondestruct. Test. 52(4), 212–219 (2016)

    Article  Google Scholar 

  15. Parrini, L.: Design of advanced ultrasonic transducers for welding devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1632–1639 (2001). https://doi.org/10.1109/58.971714

    Article  Google Scholar 

  16. Volkov, S.S., Kholopov, Y.V.: Technology and equipment for ultrasound welding structures made of polymer-based composite materials. Weld. Int. 12(5), 400–403 (1998)

    Article  Google Scholar 

  17. Millner, R.: Ultraschalltechnik. Physik-Verlag, Belin, Weinheim (1987)

    Google Scholar 

  18. GB178-1977 (2006) Standard Sand for Cement Strength Test. China Standard Press, Beijing

  19. Lei, T., Hong, L., Yu, J., Ling, G.: Study of an acoustic field simulation of a temperature field excited by ultrasonic waves through a concrete specimen. Insight 59(6), 305–310 (2017)

    Article  Google Scholar 

  20. Garnier, V., Piwakowski, B., Abraham, O., Villain, G., Payan, C., Chaix, J.F.: Acoustic techniques for concrete evaluation: improvements, comparisons and consistency. Constr. Build. Mater. 43, 598–613 (2013). https://doi.org/10.1016/j.conbuildmat.2013.01.035

    Article  Google Scholar 

  21. Hiremath, S.R., Mahaoatra, D.R., Srinivasan, S.: Detection of crack in metal plate by thermo sonic wave based detection using FEM. Exp. Stroke Transl. Med. 1(1), 12–18 (2012)

    Google Scholar 

  22. Zweschper, T., Dillenz, A., Riegert, G., Scherling, D., Busse, G.: Ultrasound excited thermography using frequency modulated elastic waves. Insight 45(3), 178–182 (2003)

    Article  Google Scholar 

  23. Chen, Y.-C., Wu, S., Chen, P.-C.: The impedance-matching design and simulation on high power elctro-acoustical transducer. Sens. Actuators, A 115(1), 38–45 (2004). https://doi.org/10.1016/j.sna.2004.01.063

    Article  Google Scholar 

  24. Inoue, T., Sasaki, T., Miyama, T., Sugiuchi, K.: Equivalent circuit analysis for Tonpilz piezoelectric transducer. IEICE Trans. E70(10), 909–917 (1987)

    Google Scholar 

  25. Martin, G.E.: On the theory of segmented electromechanical systems. J. Acoust. Soc. Am. 36(7), 1366–1370 (1964). https://doi.org/10.1121/1.1919209

    Article  Google Scholar 

  26. Chen, Z.: Research of Ultrasonic Generator. Dissertation, Zhejiang University (2007)

  27. Lu, J., Han, X., Newaz, G., Favro, L.D., Thomas, R.L.: Study of the effect of crack closure in sonic infrared imaging. Nondestruct. Test. Eval. 22(2–3), 127–135 (2007)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51527811) and the National Key Research and Development Plan of China (Grant No. 2016YFC0401610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Tang, L., Xu, B. et al. Crack Detection in Concrete Parts Using Vibrothermography. J Nondestruct Eval 38, 21 (2019). https://doi.org/10.1007/s10921-019-0562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0562-0

Keywords