Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Self-Management Framework for Mobile Autonomous Systems

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The advent of mobile and ubiquitous systems has enabled the development of autonomous systems such as wireless-sensors for environmental data collection and teams of collaborating Unmanned Autonomous Vehicles (UAVs) used in missions unsuitable for humans. However, with these range of new application-domains comes a new challenge—enabling self-management in mobile autonomous systems. Autonomous systems have to be able to manage themselves individually as well as form self-managing teams which are able to adapt to failures, protect themselves from attacks and optimise performance. This paper proposes a novel distributed policy-based framework that enables autonomous systems of varying scale to perform self-management individually and as a team. The framework allows missions to be specified in terms of roles in an adaptable and reusable way, enables dynamic and secure team formation with a utility-based approach for optimal role assignment, caters for communication link maintenance amongst team-members and recovery from failure. Adaptive management is achieved by employing a policy-based architecture to enable dynamic modification of the management strategy relating to resources, role behaviour, communications and team management, without interrupting the basic software within the system. Evaluation of the framework shows that it is scalable with respect to the number of roles, and consequently the number of autonomous systems involved in the mission. It is also optimal with respect to role assignments, and robust to intermittent communication link and permanent team-member failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. In this example, the optimal assignment is found right after revising the cost matrix.

  2. Intel(R) Core(TM)2 Duo CPU 3.00GHz, 4GB RAM.

  3. 1Gb ethernet.

  4. n is the number of roles/UAVs.

References

  1. Horn, P.: Autonomic computing: IBMs perspective on the state of information technology. IBM Corporation (2001)

  2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)

    Article  Google Scholar 

  3. Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K., Keoh, S.L., Schaeffer-Filho, A.: AMUSE: autonomic management of ubiquitous e-health systems. Concurr. Comput. Pract. Exp. 20(3), 277–295 (2008)

    Article  Google Scholar 

  4. Asmare, E., Gopalan, A., Sloman, M., Dulay, N., Lupu, E.C.: A policy-based management architecture for mobile collaborative teams. In: Proceedings of the 7th Annual IEEE International Conference on Pervasive Computing and Communications, 2009

  5. Schaeffer-filho, A., Lupu, E., Dulay, N., Keoh, S.L., Twidle, K., Sloman, M., Heeps, S., Strowes, S.: Towards supporting interactions between self-managed cells. In: Proceedings of the First IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 224–233. Boston, MA, USA (2007)

  6. Ponder2: http://ponder2.net (2008)

  7. Asmare, E., Sloman, M.: Self-management framework for unmanned autonomous vehicles. In: Inter-Domain Management, First International Conference on Autonomous Infrastructure, Management and Security, vol. 4543 of Lecture Notes in Computer Science, pp. 164–167 (July 2007)

  8. Asmare, E., Gopalan, A., Sloman, M., Dulay, N., Lupu, E.: A mission management framework for unmanned autonomous vehicles. In: Proceedings of the The Second International ICST Conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications, 2009

  9. Bourdenas, T., Sloman, M., Lupu, E.C.: Self-healing for pervasive computing systems. In: de Lemos, R. (ed.) Architecture dependable systems VII, to be published, Lecture Notes in Computer Science (2010)

  10. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X. 509 Public Key Infrastructure Certificate and CRL Profile. Technical report, RFC 2459 (Jan 1999)

  11. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. UpnP Forum: Upnp. Available at http://www.upnp.org (20/08/2009) (2009)

  13. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing policies. In: Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks, 2004 (POLICY 2004), pp. 3–12 (2004)

  14. Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuhn, H.W.: The Hungarian method for the assignment problem1. Nav. Res. Logist. Q. 83 (1955)

  16. Kuhn, H.: Variants of the Hungarian method for assignment problems. Nav. Res. Logist. Q. 3, 253–258 (1956)

    Article  Google Scholar 

  17. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  18. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485–509 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourgeois, F., Lassalle, J.-C.: An extension of the munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM 14(12), 802–804 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Carpaneto, G., Martello, S., Toth, P.: Algorithms and codes for the assignment problem. Ann. Oper. Res. 13(1), 191–223 (1988)

    Article  MathSciNet  Google Scholar 

  22. Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Trans. Robot. 21(3), 423–437 (2005)

    Article  Google Scholar 

  23. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)

    Article  Google Scholar 

  24. Bicho, E., Monteiro, S.: Formation control for multiple mobile robots: a non-linear attractor dynamics approach. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003

  25. Sweeney, J., Brunette, T.J., Yang, Y., Grupen, R.: Coordinated teams of reactive mobile platforms. In: Proceedings of IEEE International Conference on Robotics and Automation, 2002

  26. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 1: the synchronous case. SIAM J. Control Optim. 46(6), 2096–2119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Google Scholar 

  28. MacKenzie, D.C., Arkin, R., Cameron, J.M.: Multiagent mission specification and execution. Auton. Robot. 4(1), 29–52 (1997)

    Article  Google Scholar 

  29. Ulam, P., Endo, Y., Wagner, A., Arkin, R.: Integrated mission specification and task allocation for robot teams—design and implementation. IEEE International Conference on Robotics and Automation, pp. 4428–4435 (Apr 2007)

  30. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. C-29(12), 1104–1113 (1980)

    Google Scholar 

  31. Iocchi, L.B., Nardi, D.B., Piaggio, M.B., Sgorbissa, A.B.: Distributed coordination in heterogeneous multi-robot systems. Auton. Robots 15(2), 155–168 (2003)

    Article  Google Scholar 

  32. Parker, L.E.: ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  33. Chaimowicz, L.T.R., Kumar, V.T.R., Campos, M.F.M.T.R.: A paradigm for dynamic coordination of multiple robots. Auton. Robots 17(1), 7–21 (2004)

    Article  Google Scholar 

  34. Likhachev, M., Kaess, M., Kira, Z., Arkin, R.C.: Spatio-temporal case-based reasoning for efficient reactive robot navigation. Mobile Robot Labaratory, Georgia Institute of Technology (2005)

  35. Howard, A., Parker, L.E., Sukhatme, G.S.: The SDR experience: experiments with a large-scale heterogenous mobile robot team. In: 9th International Symposium on Experimental Robotics, 2004

  36. Valente, M., Bighonha, R., Bigonha, M., Loureiro, A.: Disconnected operation in a mobile computation system. In: Proceedings of the Workshop on Software Engineering and Mobility, 2001

  37. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration planning for distributed software systems. In: ICTAI ’03: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, p. 39, Washington, DC, USA. IEEE Computer Society (2003)

  38. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic reconfiguration planning for distributed software systems. Softw. Qual. J. 15(3), 265–281 (2007)

    Article  Google Scholar 

  39. Ivan A.A., Harman J., Allen M., Karamcheti V.: (2002) Partitionable services: a framework for seamlessly adapting distributed applications to heterogeneous environments. In: 11th IEEE International Symposium on High Performance Distributed Computing, 2002. HPDC-11 2002. Proceedings, pp. 103–112 (2002)

  40. Kichkaylo, T., Ivan, A., Karamcheti, V.: Constrained component deployment in wide-area networks using AI planning techniques. In: Parallel and Distributed Processing Symposium, 2003. Proceedings. International, p. 10 (2003)

  41. Koes, M., Nourbakhsh, I., Sycara, K.: Constraint optimization coordination architecture for search and rescue robotics. In: Robotics and automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 3977–3982 (May 2006)

  42. C.O. Inc.: CPLEX linear optimizer and mixed integer optimizer. Suite 279, 930 (2003)

    Google Scholar 

Download references

Acknowledgments

The work reported in this paper was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence and UK EPSRC Aedus2 project (Grant EP/E025188/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandha Gopalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmare, E., Gopalan, A., Sloman, M. et al. Self-Management Framework for Mobile Autonomous Systems. J Netw Syst Manage 20, 244–275 (2012). https://doi.org/10.1007/s10922-011-9201-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-011-9201-5

Keywords