Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

RIS-aided Cooperative FD-SWIPT-NOMA Performance Over Nakagami-m Channels

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In this work, we investigate Reconfigurable Intelligent Surface (RIS)-aided Full-Duplex (FD)-Simultaneous Wireless Information Power Transfer (SWIPT)-Cooperative non-Orthogonal Multiple Access (C-NOMA) consisting of two paired devices. The device with better channel conditions (\(D_1\)) is designated to act as a FD relay to assist the device with poor channel conditions (\(D_2\)). We assume that \(D_1\) does not use its own battery energy to cooperate but harvests energy by utilizing SWIPT. A practical non-linear Energy Harvesting (EH) model is considered. We first approximate the harvested power as a Gamma Random Variable (RV) via the Moment Matching (MM) technique. This allows us to derive analytical expressions for Outage Probability (OP) and ergodic rate (ER) that are simple to compute yet accurate for a wide range of system parameters, such as EH coefficients and residual Self-Interference (SI) levels, being extensively validated by numerical simulations. The OP and ER expressions reveal how important it is to mitigate the SI in the FD relay mode since, for reasonable values of residual SI coefficient, its detrimental effect on the system performance, is extremely noticeable. Also, numerical results reveal that increasing the number of RIS elements can benefit the cooperative system much more than the non-cooperative one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Sum of product between two Nakagami-m RVs, since the RIS is programmed to cancel the phase of \(h_{ss,n}\) and \(h_{s1,n}\)

  2. Here we consider that the SIC process is performed perfectly, i.e., we do not take into account an eventual residual error from this process. [24, 30]

References

  1. Zeng, M., Hao, W., Dobre, O.A., Ding, Z.: Cooperative NOMA: state of the art key techniques, and open challenges. IEEE Netw. 34(5), 205–211 (2020)

    Article  Google Scholar 

  2. Jiang, W., Han, B., Habibi, M.A., Schotten, H.D.: The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021)

    Article  Google Scholar 

  3. Mahmood, N.H., Alves, H., López, O.A., Shehab, M., Osorio, D.P.M., Latva-Aho, M.: Six Key Features of Machine Type Communication in 6G. In: 2020 2nd 6G Wireless Summit (6G SUMMIT), pp. 1–5 (March 2020)

  4. So, J., Sung, Y.: Improving Non-Orthogonal Multiple Access by Forming Relaying Broadcast Channels. IEEE Commun. Lett. 20(9), 1816–1819 (2016)

    Article  Google Scholar 

  5. Ding, Z., Peng, M., Poor, H.V.: Cooperative Non-Orthogonal Multiple Access in 5G Systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  6. Li, X., Li, J., Liu, Y., Ding, Z., Nallanathan, A.: Residual Transceiver Hardware Impairments on Cooperative NOMA Networks. IEEE Trans. Wirel. Commun. 19(1), 680–695 (2020)

    Article  Google Scholar 

  7. Yue, X., Liu, Y., Kang, S., Nallanathan, A., Ding, Z.: Exploiting Full/Half-Duplex User Relaying in NOMA Systems. IEEE Trans. Commun. 66(2), 560–575 (2018)

    Article  Google Scholar 

  8. Zhang, Z., Ma, Z., Xiao, M., Ding, Z., Fan, P.: Full-duplex device-to-device-aided cooperative nonorthogonal multiple access. IEEE Trans. Veh. Technol. 66(5), 4467–4471 (2016)

    Google Scholar 

  9. Ashraf, N., Sheikh, S.A., Khan, S.A., Shayea, I., Jalal, M.: Simultaneous wireless information and power transfer with cooperative relaying for next-generation wireless networks: a review. IEEE Access 9, 71482–71504 (2021)

    Article  Google Scholar 

  10. Cheng, Y., Li, K.H., Liu, Y., Teh, K.C., Poor, H.V.: Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA. IEEE Trans. Wirel. Commun. 20(6), 3988–4000 (2021)

    Article  Google Scholar 

  11. Le, A.-T., Ha, N.-D.X., Do, D.-T., Silva, A., Yadav, S.: Enabling User Grouping and Fixed Power Allocation Scheme for Reconfigurable Intelligent Surfaces-Aided Wireless Systems. IEEE Access 9, 92263–92275 (2021)

    Article  Google Scholar 

  12. Yue, X., Liu, Y.: Performance Analysis of Intelligent Reflecting Surface Assisted NOMA Networks. IEEE Trans. Wirel. Commun. 1–1 (2021)

  13. Selimis, D., Peppas, K.P., Alexandropoulos, G.C., Lazarakis, F.I.: On the Performance Analysis of RIS-Empowered Communications Over Nakagami-m Fading. IEEE Commun. Lett. 25(7), 2191–2195 (2021)

    Article  Google Scholar 

  14. Li, S., Bariah, L., Muhaidat, S., Wang, A., Liang, J.: Outage analysis of NOMA-enabled backscatter communications with intelligent reflecting surfaces. IEEE Internet Things J. 1–1. (2022)

  15. Hemanth, A., Umamaheswari, K., Pogaku, A.C., Do, D.-T., Lee, B.M.: Outage performance analysis of reconfigurable intelligent surfaces-aided NOMA under presence of hardware impairment. IEEE Access 8, 212156–212165 (2020)

    Article  Google Scholar 

  16. Tahir, B., Schwarz, S., Rupp, M.: Analysis of Uplink IRS-Assisted NOMA Under Nakagami-m Fading via Moments Matching. IEEE Wirel. Commun. Lett. 10(3), 624–628 (2021)

    Article  Google Scholar 

  17. Zuo, J., Liu, Y., Al-Dhahir, N.: Reconfigurable Intelligent Surface Assisted Cooperative Non-orthogonal Multiple Access Systems. IEEE Trans. Commun. 1–1 (2021)

  18. Zhang, G., Gu, X., Duan, W., Wen, M., Choi, J., Gao, F., Ho, P.-H.: Hybrid Time-Switching and Power-Splitting EH Relaying for RIS-NOMA Downlink. IEEE Trans. Cogn. Commun. Netw. 1–1, (2022)

  19. Liu, Q., Lu, M., Li, N., Li, M., Li, F., Zhang, Z.: Joint Beamforming and Power Splitting Optimization for RIS-Assited Cooperative SWIPT NOMA Systems. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 351–356 (2022)

  20. Elhattab, M., Arfaoui, M.A., Assi, C., Ghrayeb, A.: Reconfigurable Intelligent Surface Enabled Full-duplex/half-duplex Cooperative non-orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 21(5), 3349–3364 (2021)

    Article  Google Scholar 

  21. Ren, J., Lei, X., Peng, Z., Tang, X., Dobre, O.A.: RIS-Assisted Cooperative NOMA With SWIPT. IEEE Wirel. Commun. Lett. 12(3), 446–450 (2023)

    Article  Google Scholar 

  22. Li, X., Xie, Z., Chu, Z., Menon, V.G., Mumtaz, S., Zhang, J.: Exploiting Benefits of IRS in Wireless Powered NOMA Networks. IEEE Trans. Green Commun. Netw. 6(1), 175–186 (2022)

    Article  Google Scholar 

  23. Pei, X., Yu, H., Wen, M., Mumtaz, S., Al Otaibi, S., Guizani, M.: NOMA-based coordinated direct and relay transmission with a half-duplex/ full-duplex relay. IEEE Trans. Commun. 68(11), 6750–6760 (2020)

    Article  Google Scholar 

  24. Tran, T.-N., Vo, T.P., Fazio, P., Voznak, M.: SWIPT model adopting a PS framework to aid IoT networks inspired by the emerging cooperative NOMA technique. IEEE Access 9, 61489–61512 (2021)

    Article  Google Scholar 

  25. Wan, D., Wen, M., Ji, F., Liu, Y., Huang, Y.: Cooperative NOMA Systems With Partial Channel State Information Over Nakagami-\(m\) Fading Channels. IEEE Trans. Commun. 66(3), 947–958 (2017)

    Article  Google Scholar 

  26. Wei, L., Hu, R.Q., Qian, Y., Wu, G.: Enable Device-to-Device Communications Underlaying Cellular Networks: Challenges and Research Aspects. IEEE Commun. Magaz. 52(6), 90–96 (2014)

    Article  Google Scholar 

  27. Alsaba, Y., Leow, C.Y., Rahim, S.K.A.: Full-duplex cooperative non-orthogonal multiple access with beamforming and energy harvesting. IEEE Access 6, 19726–19738 (2018)

    Article  Google Scholar 

  28. Huang, H., Zhu, M.: Energy efficiency maximization design for full-duplex cooperative NOMA systems with SWIPT. IEEE Access 7, 20442–20451 (2019)

    Article  Google Scholar 

  29. Liau, Q.Y., Leow, C.Y.: Cooperative NOMA System with Virtual Full Duplex User Relaying. IEEE Access 7, 2502–2511 (2018)

    Article  Google Scholar 

  30. Wu, W., Yin, X., Deng, P., Guo, T., Wang, B.: Transceiver design for downlink SWIPT NOMA systems with cooperative full-duplex relaying. IEEE Access 7, 33464–33472 (2019)

    Article  Google Scholar 

  31. Rabie, K.M., Salem, A., Alsusa, E., Alouini, M.-S.: Energy-harvesting in cooperative AF relaying networks over log-normal fading channels. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016)

  32. Do, T.N., An, B.: Optimal sum-throughput analysis for downlink cooperative SWIPT NOMA systems. In: 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom), pp. 85–90 (2018)

  33. Do, T.N., Kaddoum, G., Nguyen, T.L., da Costa, D.B., Haas, Z.J.: Multi-RIS-aided wireless systems: Statistical characterization and performance analysis. arXiv:2104.01912 (2021)

  34. Liu, C., Zhang, L., Chen, Z., Li, S.: Outage Probability Analysis in Downlink SWIPT-Assisted Cooperative NOMA Systems. J. Commun. Inf. Netw. 7(1), 72–87 (2022)

    Article  Google Scholar 

  35. Liu, Z., Ye, Y., Lu, G., Hu, R.Q.: System outage performance of SWIPT enabled full-duplex two-way relaying with residual hardware impairments and self-interference. IEEE Syst. J. (2022)

  36. Jin, Y., Guo, R., Zhou, L., Hu, Z.: Secure Beamforming for IRS-Assisted Nonlinear SWIPT Systems with Full-Duplex User. IEEE Commun. Lett. (2022)

  37. Yue, X., Liu, Y., Kang, S., Nallanathan, A., Ding, Z.: Outage Performance of full/half-duplex User Relaying in NOMA Systems. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6 (May 2017)

  38. Boshkovska, E., Ng, D.W.K., Zlatanov, N., Schober, R.: Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 19(12), 2082–2085 (2015)

    Article  Google Scholar 

  39. Liang, X., Gong, X., Wu, Y., Ng, D.W.K., Hong, T.: Analysis of Outage Probabilities for Cooperative NOMA Users with Imperfect CSI. In: 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 1617–1623 (2018)

  40. Tahir, B., Schwarz, S., Rupp, M.: Outage analysis of uplink IRS-assisted NOMA under elements splitting. In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). IEEE, pp. 1–5 (2021)

  41. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw Hill, Boston (2002)

    Google Scholar 

  42. Zhu, Z., Ma, M., Sun, G., Hao, W., Liu, P., Chu, Z., Lee, I.: Secrecy Rate Optimization in NonLinear Energy Harvesting Model-Based mmWave IoT Systems With SWIPT. IEEE Syst. J. 1–11 (2022)

  43. Gao, S., Xiong, K., Jiang, R., Zhou, L., Tang, H.: Outage Performance of Wireless-Powered SWIPT Networks with Non-linear EH Model in Nakagami-m Fading. In: 2018 14th IEEE International Conference on Signal Processing (ICSP), pp. 668–671 (2018)

  44. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. Academic press (2014)

  45. The Wolfram Functions Site. [Online]. Available: https://functions.wolfram.com

Download references

Acknowledgements

This work has been partially supported by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant 310681/2019-7 and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Finance Code 001. All the agencies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taufik Abrão.

Additional information

This work was supported in part by the CAPES (Finance Code 001) and National Council for Scientific and Technological Development (CNPq) of Brazil under Grant 310681/2019-7.

Appendices

Appendix A. Proof of Lemma 1

Our objective is to approximate the power utilized in the relaying step, \(P_H\), defined by in Eq. (7), as a Gamma RV using the method of moments. For this reason, let us define \(Y=\frac{1}{1+e^{-a(\rho P_{in}-b)}}\), thus the first moment of Y can be lower bounded as

$$\begin{aligned} \mathbb {E}[Y] \ge \frac{1}{1+\mathbb {E}\left[ e^{-a(\rho P_{in}-b)}\right] } = \frac{1}{1 + \frac{e^{ab}}{\left( 1 + \theta _1 a \rho P_t \beta _{ss} \beta _{s1}\right) ^{k_1}}} \end{aligned}$$
(40)

where, utilizing Eq. (8), we obtain

$$\begin{aligned} \mathbb {E}\left[ e^{-a(\rho P_{in}-b)}\right]= & {} e^{ab} \int _{0}^{\infty } e^{-a\rho P_t \beta _{ss} \beta _{s1} x} f_{X_1^2}(x) dx \nonumber \\\overset{(i)}{=} & {} \frac{e^{ab}}{\Gamma (k_1)\theta _1^{k_1}} \int _{0}^{\infty } x^{k1-1} e^{-x\left( \frac{1}{\theta _1}+a \rho P_t \beta _{ss}\beta _{s1} \right) } \nonumber \\= & {} \frac{e^{ab}}{ \left( 1 + \theta _1 a\rho P_t \beta _{ss} \beta _{s1} \right) ^{k_1} } \end{aligned}$$
(41)

where [44, 3.351.3] is utilized in (i). By proceeding with the same steps above, similarly, the second moment of Y can be given by

$$\begin{aligned} \mathbb {E}[Y^2] \ge \frac{1}{1 + \frac{2e^{ab}}{\left( 1+\theta _1 a\rho P_t \beta _{ss} \beta _{s1}\right) ^{k_1}} + \frac{e^{2ab}}{\left( 1+2\theta _1 a\rho P_t \beta _{ss} \beta _{s1}\right) ^{k_1}} }. \end{aligned}$$
(42)

The shape \(k_{P_H}\) and scale \(\theta _{P_H}\) parameters of \(P_H\), which will be approximated as Gamma RV, are given by [40]

$$\begin{aligned} k_{P_H}= & {} \frac{\left( \mathbb {E}[Y]-\frac{1}{1+e^{ab}}\right) ^2}{\mathbb {E}[Y^2]-\mathbb {E}[Y]^2}, \end{aligned}$$
(43)
$$\begin{aligned} \theta _{P_H}= & {} \frac{\mathbb {E}[Y^2]-\mathbb {E}[Y]^2}{\mathbb {E}[Y]-\frac{1}{1+e^{ab}}}. \end{aligned}$$
(44)

By defining, \(\chi \triangleq \theta _1 a\rho P_t \beta _{ss} \beta _{s1}\) and plugging (40) and (42) in (43) and (44); (25) (26) are obtained and this completes the proof.

Appendix B. Proof of Theorem 2

After performing some mathematical manipulations, Eq. (31) can be written as follows

$$\begin{aligned} P_\textrm{out}^{D_1} = \textrm{Pr}\left( X_1^2 < \frac{\xi (|h_{SI}|^2P_H+\sigma ^2)}{P_t(1-\rho )\beta _{ss}\beta _{s1}} \right) , \end{aligned}$$
(45)

where \(\xi = \max \left( \frac{\gamma _{th}}{\alpha _1},\frac{\gamma _{th2}}{ (\alpha _2 - \alpha _1\gamma _{th2})} \right)\). We observe that when \(\rho =0\) or \(\omega =0\), it leads to \(P_H=0\) or \(|h_{SI}|^2=0\), respectively. In both of these particular cases, we can compute the OP of \(D_1\) as the following

$$\begin{aligned} P_{\textrm{out}}^{D_1} = \frac{1}{\Gamma (k_1)}\gamma \left( k_1, \frac{\xi \sigma ^2}{\theta _1P_t(1-\rho )\beta _{ss}\beta _{s1}} \right) , \end{aligned}$$
(46)

where we utilized the CDF of \(X_1^2\) as defined in (24).

When we have \(\rho \ne 0\) and \(\omega \ne 0\), (45) should be further analyzed. Firstly, we should notice that according to Lemma 1, \(P_H\) is a Gamma RV with shape and scale parameters given by \(k_{PH}\) and \(\theta _{PH}\) respectively. Thus (45) can be written as

$$\begin{aligned} P_\textrm{out}^{D_1}= & {} 1 - \textrm{Pr}\left( \underbrace{\frac{|h_{ SI}|^2\xi P_H}{P_t(1-\rho )}}_{V} -\underbrace{X_1^2\beta _{ss}\beta _{s1}}_{Z} <- \frac{\xi \sigma ^2}{P_t(1-\rho )}\right) , \end{aligned}$$
(47)

let us define \(V\triangleq \frac{|h_{ SI}|^2 \xi P_H}{P_t(1-\rho )}\) and \(Z\triangleq X_1^2\beta _{ss}\beta _{s1}\). Since \(P_H\) range from low values lower than nano-Watts to \(P_{th}\), which assumes values till mili-Watts, its values are lower than \(|h_{SI}|^2\), which is parameterized in \(\omega\) and undergo an Exponential distribution, due to this, here, we propose to approximate V as an exponential RV, i.e., \(V \overset{\textrm{approx}}{\sim } \textrm{Exponential}\left( \frac{\omega \xi \widetilde{P}_H}{P_t(1-\rho )}\right)\). Furthermore, since Z is the product of \(X_1\) with a constant, utilizing the scale property of Gamma distribution, \(Z \sim \textrm{Gamma}(k_1,\theta _1\beta _{ss}\beta _{s1})\), hence, (47) can be written as

$$\begin{aligned} P_\textrm{out}^{D_1}= & {} 1 - \int _{\frac{\xi \sigma ^2}{P_t(1-\rho )}}^{\infty } F_{V}\left( z-\frac{\xi \sigma ^2}{P_t(1-\rho )}\right) f_Z(z) dz\nonumber \\\overset{(i)}{=} & {} 1 -\int _{\frac{\xi \sigma ^2}{P_t(1-\rho )}}^{\infty } f_Z(z) dz +e^{\frac{\sigma ^2}{\omega \widetilde{P}_H}} \int _{\frac{\xi \sigma ^2}{P_t(1-\rho )}}^{\infty }e^{- \frac{z P_t(1-\rho )}{\omega \xi \widetilde{P}_H}} f_Z(z) \nonumber \\= & {} \frac{\gamma \left( k_1,\frac{\xi \sigma ^2}{\theta _1\beta _{ss}\beta _{s1}P_t(1-\rho )}\right) }{\Gamma (k_1)}\nonumber \\{} & {} + \frac{e^{\frac{\sigma ^2}{\omega \widetilde{P}_H}}}{\Gamma (k_1) } \frac{\Gamma \left( k_1, \frac{\xi \sigma ^2}{P_t(1-\rho )\theta _1\beta _{ss} \beta _{s1}} + \frac{\sigma ^2}{\omega \widetilde{P}_H} \right) }{ \left( \frac{P_t(1-\rho )\theta _1\beta _{ss}\beta _{s1}}{\omega \widetilde{P}_H \xi } + 1 \right) ^{k_1}}, \end{aligned}$$
(48)

where in (i) we utilized the CDF of exponential RV V, given by \(F_V(z) = 1 - e^{-\frac{z Pt(1-\rho )}{\omega \xi \widetilde{P}_H}}\), for first integral, and we apply [44, 3.381.9] for solving the second integral.

Appendix C. Proof of Theorem 3

To obtain the OP of \(D_2\), it is reasonable to consider two different cases: I) when the \(D_1\) does not operate as relay \((\rho = 0)\); II) when \(D_1\) operates as a relay \((\rho \ne 0)\).

1.1 I) \(\rho = 0\) (\(D_1\) Does Not Act as a Relay)

By recalling the established definition in subsection 3.1, we have that \(|h_2|^2 = \beta _{ss}\beta _{s2}X_2^2\), after some manipulations, we can written Eq. (33) as

$$\begin{aligned} P_\textrm{out}^{D_2}= & {} \textrm{Pr}\left( X_2^2 < \frac{\sigma ^2 \gamma _{th2} }{\beta _{ss} \beta _{s2} P_t(\alpha _2-\alpha _1\gamma _{th2})} \right) , \end{aligned}$$
(49)

according to subsection 3.1, \(X_2\) follows a Rayleigh RV with scale parameter \(\sqrt{\frac{N}{2}}\), thus, its squared magnitude follows an exponential distribution with rate parameter N. By using Eq. (24), we obtain the following expression for the OP of \(D_2\) when \(D_1\) does not operate as a relay

$$\begin{aligned} P_\textrm{out}^{D_2} = 1 - e^{\frac{-\sigma ^2 \gamma _{th2} }{N P_t\beta _{ss}\beta _{s2}(\alpha _2-\alpha _1\gamma _{th2})}}. \end{aligned}$$
(50)

1.2 II) \(\underline{\rho \ne 0}\) (\(D_1\) Operates as a Relay)

By recalling the established definition in Sect. 3.1, we have that \(|h_1|^2 = \beta _{ss}\beta _{s1}X_1^2\), similarly to the subsection I) of this Appendix, after some manipulations, we can write Eq. (33) as

$$\begin{aligned} P_\textrm{out}^{D_2}= & {} \textrm{Pr} \left( X_1^2< \frac{\gamma _{th2}(|h_{SI}|^2 P_H+\sigma ^2)}{\beta _{ss} \beta _{s1}P_t(1-\rho )(\alpha _2 - \alpha _1\gamma _{th2})}, \right. \nonumber \\{} & {} \left. X_2^2< \frac{\sigma ^2 \gamma _{th2} }{\beta _{ss} \beta _{s2}P_t(\alpha _2-\alpha _1\gamma _{th2})} \right) \nonumber \\{} & {} + \textrm{Pr}\left( X_1^2 \ge \frac{\gamma _{th2}(|h_{SI}|^2 P_H+\sigma ^2)}{\beta _{ss} \beta _{s1}P_t(1-\rho )(\alpha _2 - \alpha _1\gamma _{th2})}, \right. \nonumber \\{} & {} \left. \frac{P_t X_2^2\beta _{ss} \beta _{s2}}{\sigma ^2} < \frac{\gamma _{th2} - \frac{P_H}{\sigma ^2} |h_{1,2}|^2}{\alpha _2-\alpha _1(\gamma _{th2}-\frac{P_H}{\sigma ^2} |h_{1,2}|^2)} \right) . \end{aligned}$$
(51)

We can straightforwardly observe that the first term given by \(\textrm{Pr} \left( X_1^2 < \frac{\gamma _{th2}(|h_{SI}|^2 P_H+\sigma ^2)}{\beta _{ss} \beta _{s1}P_t(1-\rho )(\alpha _2 - \alpha _1\gamma _{th2})} \right)\) has already been derived in the Appendix B. Similarly, the second term given by \(\textrm{Pr} \left( X_2^2 < \frac{\sigma ^2 \gamma _{th2} }{\beta _{ss} \beta _{s2}P_t(\alpha _2-\alpha _1\gamma _{th2})} \right)\), has been previously derived earlier in subsection I) of this Appendix.

Therefore, here, we should focus on computing the term \(\textrm{Pr} \left( \frac{P_t X_2^2 \beta _{ss} \beta _{s2}}{\sigma ^2 } < \frac{\gamma _{th2} - \frac{P_H}{\sigma ^2} |h_{1,2}|^2}{\alpha _2-\alpha _1(\gamma _{th2}-\frac{P_H}{\sigma ^2} |h_{1,2}|^2)} \right)\). For easiness, let us define the following variables, \(Q \triangleq \frac{P_t X_2^2 \beta _{ss} \beta _{s2}}{\sigma ^2 }\) and \(W \triangleq \frac{P_H}{\sigma ^2} |h_{1,2}|^2\). Since Q is \(X_2\) scaled by constants, its distribution is given as \(Q \sim \textrm{exp}\left( \frac{N Pt \beta _{ss}\beta _{s2}}{ \sigma ^2}\right)\). Moreover, It can be observed once again that the condition \(P_{th} < \beta _{12}\), leads to \(P_H\) values generally lower than \(|h_{12}|^2\). In other words, the harvested power is highly likely to be lower than path-loss in D2D communication, as \(D_1\) is typically located in close proximity to \(D_2\). Therefore, as \(|h_{12}|^2\) follows an exponential distribution, we again proposed to approximate W as exponentialRV, \(W \sim \textrm{exp}\left( \frac{\widetilde{P}_H\beta _{12}}{\sigma ^2}\right)\), hence we must compute the following integral

$$\begin{aligned}{} & {} {\Pr } \left( Q < \frac{\gamma _{th2} - W}{\alpha _2-\alpha _1(\gamma _{th2}- W)} \right) \nonumber \\{} & {} \quad = \int _{0}^{\gamma _{th2}} F_{Q}\left( \frac{\gamma _{th2} - w}{\alpha _2-\alpha _1(\gamma _{th2}- w)}\right) f_{W}(w) dw \nonumber \\{} & {} \quad = F_{W}(\gamma _{th2}) \nonumber \\{} & {} \qquad - \frac{\sigma ^2}{\beta _{12}\widetilde{P}_H} \underbrace{\int _{0}^{\gamma _{th2}} e^{\left( \frac{-\sigma ^2}{P_tN\beta _{ss}\beta _{s2}}\right) \left( \frac{\gamma _{th2} - w}{\alpha _2-\alpha _1(\gamma _{th2}-w)} \right) -\frac{\sigma ^2}{\beta _{12}\widetilde{P}_H} w} dw }_{I}, \end{aligned}$$
(52)

Since \(D_2\) assume low rate values, and \(\alpha _2 > \alpha _1\) due to implementation of NOMA, we have \(\alpha _2 \gg \alpha _1 \gamma _{th2}\), thus, the integral in I can be approximated as

$$\begin{aligned} I\approx & {} e^{\frac{-\gamma _{th2}\sigma ^2}{P_t\beta _{ss}\beta _{s2}N\alpha _2}} \int _{0}^{\gamma _{th2}} e^{ y \left( \frac{\sigma ^2 }{P_{t}N\beta _{ss}\beta _{s2}\alpha _2 } -\frac{\sigma ^2}{\beta _{12}\widetilde{P}_H}\right) } dy, \end{aligned}$$
(53)

whose solution is found trivially. Substituting the solution of Eq. (53) in Eq. (52) we obtain

$$\begin{aligned}{} & {} \textrm{Pr} \left( \frac{P_t X_2^2\beta _{ss} \beta _{s2}}{\sigma ^2} < \frac{\gamma _{th2} - \frac{P_H}{\sigma ^2} |h_{1,2}|^2}{\alpha _2-\alpha _1(\gamma _{th2}-\frac{P_H}{\sigma ^2} |h_{1,2}|^2)} \right) \nonumber \\{} & {} \quad \approx 1 - e^{-\frac{\gamma _{th2}\sigma ^2}{\beta _{12}\widetilde{P}_H}} - \frac{\sigma ^2}{\beta _{12}\widetilde{P}_H} \left( \frac{e^{ -\frac{\gamma _{th2}\sigma ^2}{\beta _{12}\widetilde{P}_H} } - e^{\frac{-\gamma _{th2}\sigma ^2}{P_t\beta _{ss}\beta _{s2}N\alpha _2}} }{ \left( \frac{\sigma ^2 }{P_{t}N\beta _{ss}\beta _{s2}\alpha _2 } -\frac{\sigma ^2}{\beta _{12}\widetilde{P}_H}\right) } \right) \end{aligned}$$
(54)

Hence, by utilizing Eq. (54) and the remaining analytical results derived for Eq. (51) in the previous Appendix, Eq. (34) is obtained. This completes the proof.

Appendix D. Proof of Theorem 4

We have that the ER of \(D_1\) can be computed as

$$\begin{aligned} \bar{R}_1= & {} \mathbb {E} \left[ \log _2\left( 1 + \frac{|h_1|^2 (1-\rho ) P_t \alpha _1 }{ |h_{SI}|^2 P_H + \sigma ^2} \right) \right] \nonumber \\\overset{(i)}{\le } & {} \log _2 \left( \mathbb {E} \left[ 1 + \frac{|h_1|^2 (1-\rho ) P_t \alpha _1 }{ |h_{SI}|^2 P_H + \sigma ^2} \right] \right) , \end{aligned}$$
(55)

where Jensen’s inequality has been utilized in (i). Here will take the conditional expectation of Eq. (55) with respect to \(|h_1|^2\), therefore, Eq. (55) can be written as

$$\begin{aligned} \bar{R}_1 \le \log _2 \left( 1 + \frac{N^2\beta _{ss}\beta _{s1}\mu _{ss}^2\mu _{s1}^2 (1-\rho ) P_t \alpha _1 }{ |h_{SI}|^2 P_H + \sigma ^2} \right) . \end{aligned}$$
(56)

By rewriting Eq. (56) we have

$$\begin{aligned} \bar{R}_1\le & {} \log _2\left( \frac{N^2 \beta _{ss} \beta _{s1} \mu _{ss}^2\mu _{s1}^2 (1-\rho )P_t\alpha 1 + \sigma ^2}{ \widetilde{P}_H} + |h_{\textrm{SI}}|^2 \right) \nonumber \\{} & {} - \log _2\left( \frac{\sigma ^2}{\widetilde{P}_H} + |h_{\textrm{SI}}|^2 \right) , \end{aligned}$$
(57)

defining \(A \triangleq \frac{N^2 \beta _{ss} \beta _{s1} \mu _{ss}^2\mu _{s1}^2 (1-\rho )P_t\alpha 1 + \sigma ^2}{ \widetilde{P}_H}\) and \(B \triangleq \frac{\sigma ^2}{\widetilde{P}_H}\), we should computing the expectation with respect the variable \(|h_{SI}|^2\), therefore we have that

$$\begin{aligned} \mathbb {E}_{|h_{SI}|^2}[R_1]\le & {} \int _{0}^{\infty } \log _2\left( A + x \right) f_{|h_{SI}|^2}(x) dx \nonumber \\{} & {} - \int _{0}^{\infty } \log _2(B+x) f_{|h_{SI}|^2}(x) dx, \nonumber \\= & {} \frac{\ln \left( \frac{A}{B}\right) + e^{\frac{A}{\omega }} \Gamma \left( 0,\frac{A}{\omega }\right) - e^{\frac{B}{\omega }} \Gamma \left( 0,\frac{B}{\omega }\right) }{\log (2)}, \end{aligned}$$
(58)

It is essential to note that

$$\begin{aligned} \underset{x\rightarrow \infty }{\lim }\ e^{x} \Gamma \left( 0,x\right) = \underset{x\rightarrow \infty }{\lim } \frac{\Gamma (0,x)}{\frac{1}{e^{x}}} \overset{L'H}{=}\ \frac{-e^{-x} x^{-1}}{ -\frac{1}{e^{x}}} = \frac{1}{x} = 0, \end{aligned}$$
(59)

where the L’Hospital’s rule has been utilized, with [45, 06.06.20.0003.01]. Since the term \(\frac{A}{\omega }\) assumes high values, we neglect it, therefore, the ER of \(D_1\) can be given as

$$\begin{aligned} \bar{R}_1 \le \log _2\left( \frac{A}{B}\right) - \frac{e^{\frac{B}{\omega }} \Gamma \left( 0,\frac{B}{\omega }\right) }{\log (2)}, \end{aligned}$$
(60)

substituting the values of A and B in Eq. (60), Eq. (37) is obtained and this completes the proof.

Appendix E. Proof of Theorem 5

The ER of \(D_2\) is given as

$$\begin{aligned} \bar{R}_2 = \mathbb {E} \left[ \log _2\left( 1 + \textrm{SINR}_{D_2,S}^{x_2} + \textrm{SNR}_{D_2,D_1}^{x_2}\right) \right] , \end{aligned}$$
(61)

Let us focus firstly when \(\rho =0\), then by utilizing Eq. (11), we can rewritten Eq. (61) as

$$\begin{aligned} \bar{R}_2= & {} \mathbb {E}\left[ \log _2\left( 1 + \frac{|h_2|^2 P_t \alpha _2 }{|h_2|^2 P_t \alpha _1 + \sigma ^2} \right) \right] , \end{aligned}$$
(62)

By utilizing Jensen‘s inequality, we can obtain an upper bound for the ER of \(D_2\), given as

$$\begin{aligned} \bar{R}_2\le & {} \log _2\left( 1 + \mathbb {E} \left[ \frac{|h_2|^2 P_t \alpha _2 }{|h_2|^2 P_t \alpha _1 + \sigma ^2} \right] \right) \nonumber \\\le & {} \log _2 \left( 1 + \frac{N\beta _{ss}\beta _{s2}P_t\alpha _2}{N\beta _{ss}\beta _{s2}P_t\alpha _1 + \sigma ^2} \right) . \end{aligned}$$
(63)

When \(\rho \ne 0\), we should consider the term \(\textrm{SNR}_{D_2,D_1}^{x_2}\) in Eq. (61). By taking the conditional expectation with respect to the RV \(P_H\), we obtain

$$\begin{aligned} \bar{R}_2\le & {} \mathbb {E}_{P_H}\left[ \log _2\left( 1 + \frac{ N\beta _{ss}\beta _{s2} P_t \alpha _2 }{N\beta _{ss}\beta _{s2} P_t \alpha _1 + \sigma ^2} + \frac{P_H |h_{12}|^2}{\sigma ^2} \right) \right] \nonumber \\\le & {} \log _2\left( 1 + \frac{ N\beta _{ss}\beta _{s2} P_t \alpha _2 }{N\beta _{ss}\beta _{s2} P_t \alpha _1 + \sigma ^2} + \frac{ \mathbb {E}\left[ P_H\right] |h_{12}|^2}{\sigma ^2} \right) \nonumber \\= & {} \log _2\left( 1 + \frac{ N\beta _{ss}\beta _{s2} P_t \alpha _2 }{N\beta _{ss}\beta _{s2} P_t \alpha _1 + \sigma ^2} + \frac{ \widetilde{P}_H |h_{12}|^2}{\sigma ^2} \right) , \end{aligned}$$
(64)

Now, we turn our focus on calculating the expectation of Eq. (64), with respect to the variable \(|h_{12}|^2\), rewriting Eq. (64) in a conventional way, we wave

$$\begin{aligned} \bar{R}_2\le & {} \mathbb {E}\left[ \log _2\left( \frac{\sigma ^2}{\widetilde{P}_H}\left( 1 + \frac{N\beta _{ss}\beta _{s2} P_t \alpha _2 }{N\beta _{ss}\beta _{s2} P_t \alpha _1 + \sigma ^2}\right) + |h_{12}|^2\right) \right. \nonumber \\{} & {} \left. +\log _2\left( \frac{\widetilde{P}_H}{\sigma ^2}\right) \right] , \end{aligned}$$
(65)

let us define \(A \triangleq \frac{\sigma ^2}{\widetilde{P}_H}\left( 1 + \frac{N\beta _{ss}\beta _{s2} P_t \alpha _2 }{N\beta _{ss}\beta _{s2} P_t \alpha _1 + \sigma ^2}\right)\). According to Section 2, \(h_{12}\) is a complex Gaussian RV of zero mean and variance \(\beta _{12}\). Therefore, the square magnitude of \(h_{12}\), follows an exponential distribution whose PDF is given as \(f_{|h_{12}|^2} = \frac{e^{-\frac{x}{\beta _{12}}}}{\beta _{12}}\). Based on this, we should compute the following integral

$$\begin{aligned}{} & {} \int _{0}^{\infty } \log _2(A + x) f_{|h_{12}|^2}(x) dx = \frac{1}{\beta _{12}}\int _{0}^{\infty } \log _2(A + x) e^{-\frac{x}{\beta _{12}}} dx \nonumber \\{} & {} \quad \overset{(i)}{=}\ \log _2\left( A \right) + \frac{e^{ \frac{A}{\beta _{12}} }}{\log (2)} \Gamma \left( 0, \frac{A}{\beta _{12}} \right) , \end{aligned}$$

where in (i), [44, 4.337.1] and [44, 8.359.1] have been utilized. Finally, we conclude the proof by substituting the value of A in Eq. (66) and the result into Eq. (65) and performing a few basic mathematical manipulations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, W., Abrão, T. RIS-aided Cooperative FD-SWIPT-NOMA Performance Over Nakagami-m Channels. J Netw Syst Manage 32, 62 (2024). https://doi.org/10.1007/s10922-024-09838-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09838-4

Keywords