Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Distributed AgriFood Supply Chains

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

In Agrifood scenarios, where farmers need to ensure that their produce is safely produced, transported, and stored, they rely on a network of IoT devices to monitor conditions such as temperature and humidity throughout the supply chain. However, managing this large-scale IoT environment poses significant challenges, including transparency, traceability, data tampering, and accountability. Blockchain is portrayed as a technology capable of solving the problems of transparency, traceability, data tampering, and accountability, which are key issues in the AgriFood supply chain. Nonetheless, there are challenges related to managing a large-scale IoT environment using the current security, authentication, and access control solutions. To address these issues, we introduce an architecture in which IoT devices record data and store them in the participant’s cloud after validation by endorsing peers following an attribute-based access control (ABAC) policy. This policy allows IoT device owners to specify the physical quantities, value ranges, time periods, and types of data that each device is permitted to measure and transmit. Authorized users can access this data under the ABAC policy contract. Our solution demonstrates efficiency, with 50% of IoT data write requests completed in less than 0.14 s using solo ordering service and 2.5 s with raft ordering service. Data retrieval shows an average latency between 0.34 and 0.57 s and a throughput ranging from 124.8 to 9.9 Transactions Per Second (TPS) for data sizes between 8 and 512 kilobytes. This architecture not only enhances the management of IoT environments in the AgriFood supply chain but also ensures data privacy and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The implementation code and data can be requested from the authors and are available on GitHub.

References

  1. Kamilaris, A., Fonts, A., Prenafeta-Boldu, F.X.: The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 91, 640–652 (2019). https://doi.org/10.1016/j.tifs.2019.07.034. arXiv: 1908.07391. Accessed 2022-04-18

  2. Bhat, S.A., Huang, N.-F., Sofi, I.B., Sultan, M.: Agriculture-food supply chain management based on blockchain and iot: a narrative on enterprise blockchain interoperability. Agriculture (2022). https://doi.org/10.3390/agriculture12010040

    Article  Google Scholar 

  3. Xie, C., Sun, Y., Luo, H.: Secured Data Storage Scheme Based on Block Chain for Agricultural Products Tracking. In: 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), pp. 45–50 (2017). https://doi.org/10.1109/BIGCOM.2017.43

  4. Tian, F.: A supply chain traceability system for food safety based on HACCP, blockchain Internet of things. In: 2017 International Conference on Service Systems and Service Management, pp. 1–6 (2017). https://doi.org/10.1109/ICSSSM.2017.7996119. ISSN: 2161-1904

  5. Kamble, S.S., Gunasekaran, A., Sharma, R.: Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 52, 101967 (2020). https://doi.org/10.1016/j.ijinfomgt.2019.05.023

    Article  Google Scholar 

  6. Dagher, G.G., Mohler, J., Milojkovic, M., Marella, P.B.: Ancile: privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustain. Cit. Soc. 39, 283–297 (2018). https://doi.org/10.1016/j.scs.2018.02.014

    Article  Google Scholar 

  7. Kshetri, N.: Blockchain’s roles in strengthening cybersecurity and protecting privacy. Telecommun. Policy 41(10), 1027–1038 (2017). https://doi.org/10.1016/j.telpol.2017.09.003. Celebrating 40 Years of Telecommunications Policy - A Retrospective and Prospective View

  8. Ma, C., Kong, X., Lan, Q., Zhou, Z.: The privacy protection mechanism of Hyperledger Fabric and its application in supply chain finance. Cybersecurity 2(1), 5 (2019). https://doi.org/10.1186/s42400-019-0022-2

    Article  Google Scholar 

  9. Xu, J., Gu, B., Tian, G.: Review of agricultural IoT technology. Artif. Intell. Agric. 6, 10–22 (2022). https://doi.org/10.1016/j.aiia.2022.01.001. (Accessed 2022-04-19)

    Article  Google Scholar 

  10. Friha, O., Ferrag, M.A., Shu, L., Maglaras, L., Wang, X.: Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies. IEEE/CAA J. Autom. Sin. 8(4), 718–752 (2021). https://doi.org/10.1109/JAS.2021.1003925. (Accessed 2022-04-21)

    Article  Google Scholar 

  11. Mallik, A., Karim, A.B., Md, Z.H., Md, M.A.: Monitoring food storage humidity and temperature data using IoT. MOJ Food Process. Technol. (2018). https://doi.org/10.15406/mojfpt.2018.06.00194

  12. Maksimović, M., Vujović, V., Mikličanin, E.O.: Application of internet of things in food packaging and transportation. Int. J. Sustain. Agric. Manag. Inform. 1(4), 333 (2015). https://doi.org/10.1504/IJSAMI.2015.075053. (Accessed 2022-04-19)

    Article  Google Scholar 

  13. Shenoy, J., Pingle, Y.: Iot in agriculture. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1456–1458 (2016)

  14. Kodan, R., Parmar, P., Pathania, S.: Internet of things for food sector: status quo and projected potential. Food Rev. Int. 36(6), 584–600 (2020). https://doi.org/10.1080/87559129.2019.1657442. (Accessed 2022-04-19)

    Article  Google Scholar 

  15. George, R.V., Harsh, H.O., Ray, P., Babu, A.K.: Food quality traceability prototype for restaurants using blockchain and food quality data index. J. Clean. Prod. 240, 118021 (2019). https://doi.org/10.1016/j.jclepro.2019.118021. (Accessed 2021-01-07)

    Article  Google Scholar 

  16. Ali, M.S., Dolui, K., Antonelli, F.: IoT data privacy via blockchains and IPFS. In: Proceedings of the Seventh International Conference on the Internet Of Things, pp. 1–7. ACM, Linz Austria (2017). https://doi.org/10.1145/3131542.3131563. Accessed 2022-04-19

  17. Hunt, T., Moulton, O.C.: A publisher with an open heart. Biol. Open 1(1), 2–5 (2012). https://doi.org/10.1242/bio.2011001

    Article  Google Scholar 

  18. Sivanathan, A., Gharakheili, H.H., Loi, F., Radford, A., Wijenayake, C., Vishwanath, A., Sivaraman, V.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18(8), 1745–1759 (2019). https://doi.org/10.1109/TMC.2018.2866249. (Accessed 2022-04-19)

    Article  Google Scholar 

  19. Reyna, A., Martín, C., Chen, J., Soler, E., Díaz, M.: On blockchain and its integration with iot. challenges and opportunities. Future Gener. Comput. Syst. 88, 173–190 (2018)

  20. Wang, Q., Zhu, X., Ni, Y., Gu, L., Zhu, H.: Blockchain for the iot and industrial iot: a review. Internet of Things 10, 100081 (2020). https://doi.org/10.1016/j.iot.2019.100081. (Special Issue of the Elsevier IoT Journal on Blockchain Applications in IoT Environments)

    Article  Google Scholar 

  21. Zhao, G., Liu, S., Lopez, C., Lu, H., Elgueta, S., Chen, H., Boshkoska, B.M.: Blockchain technology in agri-food value chain management: a synthesis of applications, challenges and future research directions. Comput. Ind. 109, 83–99 (2019). https://doi.org/10.1016/j.compind.2019.04.002. (Accessed 2020-11-25)

    Article  Google Scholar 

  22. Feng, H., Wang, X., Duan, Y., Zhang, J., Zhang, X.: Applying blockchain technology to improve agri-food traceability: a review of development methods, benefits and challenges. J. Clean. Prod. 260, 121031 (2020). https://doi.org/10.1016/j.jclepro.2020.121031. (Accessed 2020-11-25)

    Article  Google Scholar 

  23. Lu, Q., Xu, X.: Adaptable blockchain-based systems: a case study for product traceability. IEEE Softw. 34(6), 21–27 (2017). https://doi.org/10.1109/MS.2017.4121227. (Conference Name: IEEE Software)

    Article  Google Scholar 

  24. Biswas, K., Muthukkumarasamy, V., Tan, W.L.: Blockchain based Wine Supply Chain Traceability System. In: Future Technologies Conference (FTC) (pp. 56–62). The Science and Information Organization 7 (2017)

  25. Casado Vara, R., Prieto, J., la Prieta, F.D., Corchado, J.M.: How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398 (2018). https://doi.org/10.1016/j.procs.2018.07.193. (Accessed 2021-01-06)

    Article  Google Scholar 

  26. Pal, A., Kant, K.: IoT-based sensing and communications infrastructure for the fresh food supply chain. Computer 51(2), 76–80 (2018). https://doi.org/10.1109/MC.2018.1451665. (Conference Name: Computer)

    Article  Google Scholar 

  27. Caro, M.P., Ali, M.S., Vecchio, M., Giaffreda, R.: Blockchain-based traceability in Agri-Food supply chain management: a practical implementation. In: 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), pp. 1–4 (2018). https://doi.org/10.1109/IOT-TUSCANY.2018.8373021

  28. Lucena, P., Binotto, A.P.D., Momo, F.d.S., Kim, H.: A Case Study for Grain Quality Assurance Tracking based on a Blockchain Business Network. arXiv:1803.07877 [cs] (2018). arXiv: 1803.07877. Accessed 25 Mar 2020

  29. Tsang, Y.P., Choy, K.L., Wu, C.H., Ho, G.T.S., Lam, H.Y.: Blockchain-driven IoT for food traceability with an integrated consensus mechanism. IEEE Access 7, 129000–129017 (2019). https://doi.org/10.1109/ACCESS.2019.2940227. (Conference Name: IEEE Access)

    Article  Google Scholar 

  30. Salah, K., Nizamuddin, N., Jayaraman, R., Omar, M.: Blockchain-based soybean traceability in agricultural supply chain. IEEE Access 7, 73295–73305 (2019). https://doi.org/10.1109/ACCESS.2019.2918000. (Conference Name: IEEE Access)

    Article  Google Scholar 

  31. Wang, S., Li, D., Zhang, Y., Chen, J.: Smart contract-based product traceability system in the supply chain scenario. IEEE Access 7, 115122–115133 (2019). https://doi.org/10.1109/ACCESS.2019.2935873. (Conference Name: IEEE Access)

    Article  Google Scholar 

  32. Lin, Q., Wang, H., Pei, X., Wang, J.: Food safety traceability system based on blockchain and EPCIS. IEEE Access 7, 20698–20707 (2019). https://doi.org/10.1109/ACCESS.2019.2897792. (Conference Name: IEEE Access)

    Article  Google Scholar 

  33. Shakhbulatov, D., Arora, A., Dong, Z., Rojas-Cessa, R.: Blockchain Implementation for Analysis of Carbon Footprint across Food Supply Chain. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 546–551 (2019). https://doi.org/10.1109/Blockchain.2019.00079

  34. Mondal, S., Wijewardena, K.P., Karuppuswami, S., Kriti, N., Kumar, D., Chahal, P.: Blockchain inspired RFID-based information architecture for food supply chain. IEEE Internet Things J. 6(3), 5803–5813 (2019). https://doi.org/10.1109/JIOT.2019.2907658. (Conference Name: IEEE Internet of Things Journal)

    Article  Google Scholar 

  35. Shahid, A., Almogren, A., Javaid, N., Al-Zahrani, F.A., Zuair, M., Alam, M.: Blockchain-based agri-food supply chain: a complete solution. IEEE Access 8, 69230–69243 (2020). https://doi.org/10.1109/ACCESS.2020.2986257

    Article  Google Scholar 

  36. Zhang, X., Sun, P., Xu, J., Wang, X., Yu, J., Zhao, Z., Dong, Y.: Blockchain-based safety management system for the grain supply chain. IEEE Access 8, 36398–36410 (2020). https://doi.org/10.1109/ACCESS.2020.2975415. (Conference Name: IEEE Access)

    Article  Google Scholar 

  37. Mezquita, Y., González-Briones, A., Casado-Vara, R., Chamoso, P., Prieto, J., Corchado, J.M.: Blockchain-Based Architecture: A MAS Proposal for Efficient Agri-Food Supply Chains. In: Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S. (eds.) Ambient Intelligence - Software and Applications -,10th International Symposium on Ambient Intelligence vol. 1006, pp. 89–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24097-4_11. Series Title: Advances in Intelligent Systems and Computing

  38. Ferdousi, T., Gruenbacher, D., Scoglio, C.M.: A permissioned distributed ledger for the us beef cattle supply chain. IEEE Access 8, 154833–154847 (2020). https://doi.org/10.1109/ACCESS.2020.3019000. (Conference Name: IEEE Access)

    Article  Google Scholar 

  39. Tran, Q.N., Turnbull, B.P., Wu, H.-T., de Silva, A.J.S., Kormusheva, K., Hu, J.: A survey on privacy-preserving blockchain systems (PPBS) and a novel PPBS-based framework for smart agriculture. IEEE Open J. Comput. Soc. 2, 72–84 (2021). https://doi.org/10.1109/OJCS.2021.3053032. (Accessed 2022-03-21)

    Article  Google Scholar 

  40. Kumarathunga, M., Calheiros, R.N., Ginige, A.: Smart agricultural futures market: blockchain technology as a trust enabler between smallholder farmers and buyers. Sustainability (2022). https://doi.org/10.3390/su14052916

    Article  Google Scholar 

  41. Saranya, P., Maheswari, R.: Proof of transaction (potx) based traceability system for an agriculture supply chain. IEEE Access 11, 10623–10638 (2023). https://doi.org/10.1109/ACCESS.2023.3240772

    Article  Google Scholar 

  42. Manoj, T., Makkithaya, K., Narendra, V.G.: A trusted iot data sharing and secure oracle based access for agricultural production risk management. Comput. Electron. Agric. 204, 107544 (2023). https://doi.org/10.1016/j.compag.2022.107544

    Article  Google Scholar 

  43. Gozali, L., Kristina, H.J., Yosua, A., Zagloel, T.Y.M., Masrom, M., Susanto, S., Tanujaya, H., Irawan, A.P., Gunadi, A., Kumar, V., Garza-Reyes, J.A., Jap, T.B., Daywin, F.J.: The improvement of block chain technology simulation in supply chain management (case study: pesticide company). Sci. Rep. 14, 3784 (2024). https://doi.org/10.1038/s41598-024-53694-w

    Article  Google Scholar 

  44. Ahmed, A., Parveen, I., Abdullah, S., Ahmad, I., Alturki, N., Jamel, L.: Optimized data fusion with scheduled rest periods for enhanced smart agriculture via blockchain integration. IEEE Access 12, 15171–15193 (2024). https://doi.org/10.1109/ACCESS.2024.3357538

    Article  Google Scholar 

  45. Yang, X., Li, M., Yu, H., Wang, M., Xu, D., Sun, C.: A trusted blockchain-based traceability system for fruit and vegetable agricultural products. IEEE Access 9, 36282–36293 (2021). https://doi.org/10.1109/ACCESS.2021.3062845. (Accessed 2022-03-21)

    Article  Google Scholar 

  46. Nasir, Q., Qasse, I.A., Abu Talib, M., Nassif, A.B.: Performance analysis of hyperledger fabric platforms. Secur. Commun. Netw. 2018, 1–14 (2018). https://doi.org/10.1155/2018/3976093. (Accessed 2022-04-22)

    Article  Google Scholar 

  47. Kakei, S., Shiraishi, Y., Mohri, M., Nakamura, T., Hashimoto, M., Saito, S.: Cross-certification towards distributed authentication infrastructure: a case of hyperledger fabric. IEEE Access 8, 135742–135757 (2020). https://doi.org/10.1109/ACCESS.2020.3011137. (Accessed 2022-04-22)

    Article  Google Scholar 

  48. Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of hyperledger fabric smart contracts. In: 2019 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), pp. 1–10 (2019). https://doi.org/10.1109/IWBOSE.2019.8666486

  49. Cachin, C.: Architecture of the hyperledger blockchain fabric. (2016)

  50. Davenport, A., Shetty, S., Liang, X.: Attack surface analysis of permissioned blockchain platforms for smart cities. In: 2018 IEEE International Smart Cities Conference (ISC2), pp. 1–6 (2018). https://doi.org/10.1109/ISC2.2018.8656983

  51. Hua, S., Zhang, S., Pi, B., Sun, J., Yamashita, K., Nomura, Y.: Reasonableness discussion and analysis for hyperledger fabric configuration. In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–3 (2020). https://doi.org/10.1109/ICBC48266.2020.9169444

  52. Zhou, E., Sun, H., Pi, B., Sun, J., Yamashita, K., Nomura, Y.: Ledgerdata refiner: A powerful ledger data query platform for hyperledger fabric. In: 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), pp. 433–440 (2019). https://doi.org/10.1109/IOTSMS48152.2019.8939212

  53. Feng, Y., Zhang, W., Luo, X., Zhang, B.: A consortium blockchain-based access control framework with dynamic orderer node selection for 5g-enabled industrial iot. IEEE Trans. Ind. Inform. 18(4), 2840–2848 (2022). https://doi.org/10.1109/TII.2021.3078183

    Article  Google Scholar 

  54. Mazumdar, S., Ruj, S.: Design of anonymous endorsement system in hyperledger fabric. IEEE Trans. Emerg. Top. Comput. 9(4), 1780–1791 (2021). https://doi.org/10.1109/TETC.2019.2920719

    Article  Google Scholar 

  55. Berendea, N., Mercier, H., Onica, E., Rivière, E.: Fair and efficient gossip in hyperledger fabric. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pp. 190–200 (2020). https://doi.org/10.1109/ICDCS47774.2020.00027

  56. Guo, H., Li, W., Nejad, M., Shen, C.-C.: Proof-of-event recording system for autonomous vehicles: a blockchain-based solution. IEEE Access 8, 182776–182786 (2020). https://doi.org/10.1109/ACCESS.2020.3029512

    Article  Google Scholar 

  57. Manevich, Y., Barger, A., Tock, Y.: Endorsement in hyperledger fabric via service discovery. IBM J. Res. Dev. 63(2/3), 2–129 (2019). https://doi.org/10.1147/JRD.2019.2900647

    Article  Google Scholar 

  58. Wadud, M.A.H., Amir-Ul-Haque Bhuiyan, T.M., Uddin, M.A., Rahman, M.M.: A patient centric agent assisted private blockchain on hyperledger fabric for managing remote patient monitoring. In: 2020 11th International Conference on Electrical and Computer Engineering (ICECE), pp. 194–197 (2020). https://doi.org/10.1109/ICECE51571.2020.9393124

  59. Gao, L., Wu, C., Yoshinaga, T., Chen, X., Ji, Y.: Multi-channel blockchain scheme for internet of vehicles. IEEE Open J. Comput. Soc. 2, 192–203 (2021). https://doi.org/10.1109/OJCS.2021.3070714

    Article  Google Scholar 

  60. Kakei, S., Shiraishi, Y., Mohri, M., Nakamura, T., Hashimoto, M., Saito, S.: Cross-certification towards distributed authentication infrastructure: a case of hyperledger fabric. IEEE Access 8, 135742–135757 (2020). https://doi.org/10.1109/ACCESS.2020.3011137

    Article  Google Scholar 

  61. Manevich, Y., Barger, A., Tock, Y.: Endorsement in hyperledger fabric via service discovery. IBM J. Res. Dev. 63(2/3), 2–129 (2019). https://doi.org/10.1147/JRD.2019.2900647

    Article  Google Scholar 

  62. Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to Attribute Based Access Control (ABAC) Definition and Considerations. Technical Report NIST SP 800-162, National Institute of Standards and Technology (January 2014). https://doi.org/10.6028/NIST.SP.800-162. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf Accessed 2022-04-09

  63. Bhatt, S., Pham, T.K., Gupta, M., Benson, J., Park, J., Sandhu, R.: Attribute-based access control for aws internet of things and secure industries of the future. IEEE Access 9, 107200–107223 (2021). https://doi.org/10.1109/ACCESS.2021.3101218

    Article  Google Scholar 

  64. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-Based Access Control. Computer 48(2), 85–88 (2015). https://doi.org/10.1109/MC.2015.33. (Accessed 2022-04-10)

    Article  Google Scholar 

  65. Hu, V.C., Ferraiolo, D.F., Chandramouli, R., Kuhn, D.R.: Attribute-Based Access Control. Artech House Information Security and Privacy Series. Artech House, Boston (2018)

    Google Scholar 

  66. Liu, H., Han, D., Li, D.: Fabric-iot: a blockchain-based access control system in IoT. IEEE Access 8, 18207–18218 (2020). https://doi.org/10.1109/ACCESS.2020.2968492. (Accessed 2022-04-17)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to extend my sincere gratitude to my advising professor, who presented me with the chance to undertake this project on the subject of Blockchain for the agriFood supply chain. This experience allowed me to conduct extensive research and exposed me to numerous new ideas. I am also grateful to CAPES for funding my studies at the Federal University of Santa Catarina.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare no conflicts of interest. All coauthors have reviewed and concur with the content of the manuscript, and there are no financial interests to disclose. The submission is an original work and has not been submitted for publication elsewhere.

Corresponding author

Correspondence to Hélio Pesanhane.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Ethics Approval

This research involved no studies on animals or humans, nor did it occur in any private or protected area. No special permission was required for the relevant locations.

Consent to publish

The Author hereby agrees that the Publisher has the right to publish the Work as described herein. The medium in which the Work will be published may change over time with advances in technology. The Author hereby agrees that the Publisher has a worldwide, unlimited right: 1. to publish and distribute the Work in any form and in all media now known or hereafter discovered; 2. to translate the Work and exercise all rights in all media in the resulting translations; 3. to transfer or sublicense all the rights granted herein in whole or in part to third parties, including, at the Publisher’s option, by publishing the Work open access under a Creative Commons license; and 4. to accept and retain payment for such publications, translations, sublicenses, or transfers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesanhane, H., Bezerra, W.R., Koch, F. et al. Distributed AgriFood Supply Chains. J Netw Syst Manage 32, 64 (2024). https://doi.org/10.1007/s10922-024-09839-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-024-09839-3

Keywords