Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The possible use of natural silica nanoporous biomaterial from marine diatom for drug delivery applications was explored. Coscinodiscus concinnus have a homogeneous size distribution with radius of 220 ± 15 µm with surface featuring a mounded topography with about 2 µm wide porous domes organized on the surface in pentagonal packing. Streptomycin, used as a hydrophilic drug to demonstrate the in vitro oral drug delivery model based on diatom structure, mainly adsorbed on to the diatom silica surface (foramen), inside pores (cribrum) and into the internal hollow diatom structure (cribellum). The maximum drug loading capacity of streptomycin was 33.33 ± 2 %. The release was biphasic, involving initial burst release (first 6 h) mainly from the surface of diatom foramen, and sustained drug release (upto 7 days) from cribrum and cribellum. The study indicated that the live diatoms from marine environment, due to their unique features (easy cultivable, low-cost and biocompatibility), are a potential and alternative natural source of nanoporous siliceous material for in vitro oral drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 352, 710 (1992)

    Article  Google Scholar 

  2. A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regi, J. Sol-Gel. Sci. Technol. 26, 1199 (2003)

    Article  CAS  Google Scholar 

  3. M. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 46, 7548 (2007)

    Article  Google Scholar 

  4. I. Izquierdo-Barba, M. Colilla, M. Vallet-Regí, J. Nanomater. 3, 1 (2008)

    Article  Google Scholar 

  5. M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo-Barba, J.M. Gonzalez-Calbet, J. Mater. Chem. 16, 26 (2006)

    Article  CAS  Google Scholar 

  6. M. Vallet-Regi, F. Balas, M. Colilla, M. Manzano, Prog. Solid State Chem. 36, 163 (2008)

    Article  CAS  Google Scholar 

  7. I. Slowing, B.G. Trewyn, V.S.Y. Lin, J. Am. Chem. Soc. 128, 14792 (2006)

    Article  CAS  Google Scholar 

  8. M. Vallet-Regi, I. Izquierdo-Barba, A. Ramila, J. Perez-Pariente, F. Babonneau, J.M. Gonzalez-Calbet, Solid State Sci. 7, 233 (2005)

    Article  CAS  Google Scholar 

  9. M. Vallet-Regi, Chem. Eur. J. 12, 5934 (2006)

    Article  CAS  Google Scholar 

  10. S. Angelos, M. Liong, E. Choi, J.I. Zink, Chem. Eng. J. 137, 4 (2008)

    Article  CAS  Google Scholar 

  11. S. Simovic, N. Ghouchi-Eskandar, A. Moom Sinn, D. Losic, A.C. Prestidge, Curr. Drug Discov. Technol. 8, 250 (2011)

    Article  CAS  Google Scholar 

  12. M.D. Popova, A. Szegedi, I.N. Kolev, J. Mihaly, B.S. Tzanikov, T. Tz Momekov, N.G. Lambov, K.P. Yoncheva, Int. J. Pharm. 436, 778 (2012)

    Article  CAS  Google Scholar 

  13. R.W. Drum Gordon, R.Trends Biotechnol. 21, 325 (2003)

    Article  Google Scholar 

  14. T. Fuhrmann, S. Landwehr, M. El Rharbi-Kucki, M. Sumper, Appl. Phys. B: Lasers. Opt. 78, 257 (2004)

    Article  CAS  Google Scholar 

  15. J. Parkinson, R. Gordon, Trends Biotechnol. 17, 190 (1999)

    Article  CAS  Google Scholar 

  16. D. Losic, G. Rosengarten, J.G. Mitchell, N.H. Voelcker, J. Nanosci. Nanotechnol. 6, 982 (2006)

    Article  CAS  Google Scholar 

  17. F. Xu, Y. Wang, X. Wang, Y. Zhang, Y. Tang, P. Yang, Adv. Mater. 15, 1751 (2003)

    Article  CAS  Google Scholar 

  18. Y. Yu, J. Addai-Mensah, D. Losic, Langmuir 26, 14068 (2010)

    Article  CAS  Google Scholar 

  19. R. Gordon, D. Losic, M.A. Tiffany, S.S. Nagy, F.A.S. Sternberg, Trends Biotechnol. 27, 116 (2009)

    Article  CAS  Google Scholar 

  20. N. Kroger, N. Poulsen, Ann. Rev. of Genesis 42, 83 (2008)

    Article  CAS  Google Scholar 

  21. C. Jeffryes, T. Gutu, J. Jiao, G.L. Rorrer, Mater. Sci. and Engine. 28, 107 (2008)

    Article  CAS  Google Scholar 

  22. D. Losic, J.R. Pillar, T. Dilger, G.J. Mitchell, H.N. Voelcker, J. Por, Mater. 14, 61 (2007)

    CAS  Google Scholar 

  23. P. Gnanamoorthy, V. Karthikeyan, V.A. Prabu, J. Por. Mater. 21, 225–233 (2014)

    Article  CAS  Google Scholar 

  24. M.S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, Nanomedic 6, 1159 (2011)

    Article  CAS  Google Scholar 

  25. M. Bariana, M.S. Aw, M. Kurkuri, D. Losic, Inter. J. Pharmace. 443, 230 (2013)

    Article  CAS  Google Scholar 

  26. G. Sheng, J. Hu, X. Wang, Appl. Radiat. Isot. 66, 1313 (2008)

    Article  CAS  Google Scholar 

  27. R.A. Nyquist, C.L. Putzig, M.A. Leugers, R.O. Kagel, Academic Press, Inc., London. (1997)

  28. Y. Yu, J. Addai-Mensah, D. Losic, Sci. Technol. Adv. Mater. 13, 015008 (2012)

    Article  Google Scholar 

  29. F. Balas, M. Monzano, P. Horcajada, M. Vallet-Regi, J. Am. Chem. Soc. 128, 8116 (2006)

    Article  CAS  Google Scholar 

  30. Y. Yu, J. Addai-Mensah, D. Losic, in: Chemeca, p. 2187 (2011)

  31. S.W. Song, K. Hidajat, S. Kawi, Langmu 21, 9568 (2005)

    Article  CAS  Google Scholar 

  32. C.E. Mora-Huertas, H. Fessi, A. Elaissari, Int. J. Pharm. 385, 113 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Annamalai University authorities for support, and this work was supported by funding under fast track project file no: SERB/F/5582/2012-13 from Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gnanamoorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanamoorthy, P., Anandhan, S. & Prabu, V.A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery. J Porous Mater 21, 789–796 (2014). https://doi.org/10.1007/s10934-014-9827-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-014-9827-2

Keywords