Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In order to intrinsically boost the lignin catalytic depolymerization performance of HZSM-5 (HM5) zeolite catalyst, we investigated the depolymerization of lignin-to-aromatic products over different hierarchical HM5 zeolite catalyst to understand the presence of mesoporosity on the catalytic activity in generating aromatic monomers. Firstly, different hierarchical HM-5 zeolite catalyst (HM5, 0.15HM5, 0.35HM5 and 0.75HM5) were prepared by the physical method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), Brunauer–Emmett–Teller (BET) and temperature-programmed desorption of ammonia (NH3-TPD) were used to characterize catalysts. Compared with conventional HM5 zeolite catalyst, the hierarchical HM5 (0.35HM5) catalyst showed a significant strengthening effect on the depolymerization of organosolv lignin. Among them, the 4-unsaturated phenolic monomer product was decreased from 0.52 to 0%, the 4-alkyl phenol product was increased from 1.6 to 4.07%, and the no side chain phenolic monomer product was increased from 3.4 to 9.16%. In addition, we also illustrated that the hierarchical 0.35HM5 zeolite catalyst had high stability, and it could be reused for up to five cycles without loss of catalytic activity. It was worth noting that phenolic monomers products produced by hierarchical 0.35HM5 zeolite catalyst had great potential to be a promising renewable alternative to fossil resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Mansir, Y.H. Taufiq-Yap, U. Rashid, I.M. Lokman, Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Convers. Manage. 141, 171–182 (2017)

    Article  CAS  Google Scholar 

  2. F. Yan, R. Ma, X. Ma, K. Cui, K. Wu, M. Chen, Y. Li, Ethanolysis of Kraft lignin to platform chemicals on a MoC1–x/Cu–MgAlOz catalyst. Appl. Catal. B 202, 305–313 (2017)

    Article  CAS  Google Scholar 

  3. X. Pan, N. Gilkes, J. Kadla, K. Pye, S. Saka, D. Gregg, K. Ehara, D. Xie, D. Lam, J. Saddler, Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnol. Bioeng. 94(5), 851–861 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Zhang, J. Song, B. Han, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117(10), 6834–6880 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115(21), 11559–11624 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. A. Rahimi, A. Ulbrich, J.J. Coon, S.S. Stahl, Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526), 249–252 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. B. Du, H. Zhu, X. Wang, L.P. Xiao, J. Ma, X. Chen, J. Zhou, R.C. Sun, Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. Int. J. Biol. Macromol. 174, 254–262 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. B. Du, C. Chen, Y. Sun, M. Yang, M. Yu, B. Liu, X. Wang, J. Zhou, Efficient and controllable ultrasound-assisted depolymerization of organosolv lignin catalyzed to liquid fuels by MCM-41 supported phosphotungstic acid. RSC Adv. 10(52), 31479–31494 (2020)

    Article  CAS  Google Scholar 

  9. B. Du, C. Liu, X. Wang, Y. Han, Y. Guo, H. Li, J. Zhou, Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renew. Energy 147, 1331–1339 (2020)

    Article  CAS  Google Scholar 

  10. B. Du, C. Chen, Y. Sun, M. Yang, M. Yu, B. Liu, X. Wang, J. Zhou, Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int. J. Biol. Macromol. 156, 669–680 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. B. Du, C. Chen, Y. Sun, M. Yu, M. Yang, X. Wang, J. Zhou, Catalytic conversion of lignin to bio-oil over PTA/MCM-41 catalyst assisted by ultrasound acoustic cavitation. Fuel Process. Technol. 206, 106479 (2020)

    Article  CAS  Google Scholar 

  12. A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G.A. Tuskan, C.E. Wyman, Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185), 1246843–1246843 (2014)

    Article  PubMed  Google Scholar 

  13. J.-Y. Kim, J.H. Lee, J. Park, J.K. Kim, D. An, I.K. Song, J.W. Choi, Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrol. 114, 273–280 (2015)

    Article  CAS  Google Scholar 

  14. J. Li, X. Li, G. Zhou, W. Wang, C. Wang, S. Komarneni, Y. Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl. Catal. A 470, 115–122 (2014)

    Article  CAS  Google Scholar 

  15. S.K. Singh, J.D. Ekhe, Solvent effect on HZSM-5 catalyzed solvolytic depolymerization of industrial waste lignin to phenols: Superiority of the water–methanol system over methanol. RSC Adv. 4(95), 53220–53228 (2014)

    Article  CAS  Google Scholar 

  16. S.K. Singh, J.D. Ekhe, Towards effective lignin conversion: HZSM-5 catalyzed one-pot solvolytic depolymerization/hydrodeoxygenation of lignin into value added compounds. RSC Adv. 4(53), 27971 (2014)

    Article  CAS  Google Scholar 

  17. K.Y. Nandiwale, A.M. Danby, A. Ramanathan, R.V. Chaudhari, B. Subramaniam, Zirconium-incorporated mesoporous silicates show remarkable lignin depolymerization activity. ACS Sustain. Chem. Eng. 5(8), 7155–7164 (2017)

    Article  CAS  Google Scholar 

  18. H. Ben, A.J. Ragauskas, Influence of Si/Al ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products. ACS Sustain. Chem. Eng. 1(3), 316–324 (2013)

    Article  CAS  Google Scholar 

  19. K.K. Ramasamy, H. Zhang, J. Sun, Y.J.C.T. Wang, Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal. Today 238, 103–110 (2014)

    Article  CAS  Google Scholar 

  20. L. Zhang, S. Qu, L. Wang, X. Zhang, G.J.C.T. Liu, Preparation and performance of hierarchical HZSM-5 coatings on stainless-steeled microchannels for catalytic cracking of hydrocarbons. Catal. Today 216, 64–70 (2013)

    Article  CAS  Google Scholar 

  21. R.W. Thring, S.P. Katikaneni, N.N.J.F.P.T. Bakhshi, The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Process. Technol. 62(1), 17–30 (2000)

    Article  CAS  Google Scholar 

  22. E. Buzetzki, K. Sidorová, Z. Cvengrošová, J.J.F.P.T. Cvengroš, Effects of oil type on products obtained by cracking of oils and fats. Fuel Process. Technol. 92(10), 2041–2047 (2011)

    Article  CAS  Google Scholar 

  23. X. Wang, B. Du, L. Pu, Y. Guo, H. Li, J. Zhou, Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. J. Anal. Appl. Pyrol. 129, 13–20 (2018)

    Article  CAS  Google Scholar 

  24. Y. Guo, J. Zhou, J. Wen, G. Sun, Y. Sun, Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Ind. Crops Prod. 76, 522–529 (2015)

    Article  CAS  Google Scholar 

  25. B. Du, B. Liu, X. Wang, J. Zhou, A comparison of phenolic monomers produced from different types of lignin by phosphotungstic acid catalysts. ChemistryOpen 8(5), 643–649 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Du, B. Liu, Y. Yang, X. Wang, J. Zhou, A phosphotungstic acid catalyst for depolymerization in bulrush lignin. Catalysts 9(5), 399 (2019)

    Article  Google Scholar 

  27. Z. Zhang, B. Du, H. Zhu, C. Chen, Y. Sun, X. Wang, J. Zhou, Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin. Biomass Convers. Biorefinery 1, 1–12 (2021)

    CAS  Google Scholar 

  28. C. Fernandez, I. Stan, J.P. Gilson, K. Thomas, A. Vicente, A. Bonilla, J. Perez-Ramirez, Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry 16(21), 6224–6233 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. J.T. Scanlon, D.E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23(8), 333–340 (1985)

    Article  CAS  Google Scholar 

  30. X. Wang, Y. Guo, J. Zhou, G. Sun, Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Adv. 7(14), 8314–8322 (2017)

    Article  CAS  Google Scholar 

  31. C. Liu, X. Wang, F. Lin, H. Zhang, R. Xiao, Structural elucidation of industrial bioethanol residual lignin from corn stalk: A potential source of vinyl phenolics. Fuel Process. Technol. 169, 50–57 (2018)

    Article  CAS  Google Scholar 

  32. H. Kim, J. Ralph, T. Akiyama, Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6. BioEnergy Res. 1(1), 56–66 (2008)

    Article  Google Scholar 

  33. L. Shirazi, E. Jamshidi, M.R. Ghasemi, The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol. 43(12), 1300–1306 (2008)

    Article  CAS  Google Scholar 

  34. M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl. Catal. A 345(1), 43–50 (2008)

    Article  Google Scholar 

  35. J.-Y. Kim, J. Park, H. Hwang, J.K. Kim, I.K. Song, J.W. Choi, Catalytic depolymerization of lignin macromolecule to alkylated phenols over various metal catalysts in supercritical tert-butanol. J. Anal. Appl. Pyrol. 113, 99–106 (2015)

    Article  CAS  Google Scholar 

  36. X. Huang, T.I. Koranyi, M.D. Boot, E.J. Hensen, Catalytic depolymerization of lignin in supercritical ethanol. Chemsuschem 7(8), 2276–2288 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. X. Huang, O.M.M. Gonzalez, J. Zhu, T.I. Korányi, M.D. Boot, E.J. Hensen, Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis. Green Chem. 19(1), 175–187 (2017)

    Article  CAS  Google Scholar 

  38. R. Chaudhary, P.L. Dhepe, Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chem. 19(3), 778–788 (2017)

    Article  CAS  Google Scholar 

  39. Q. Li, P. Peng, D. Liu, M. Li, L. Song, M. Li, Z. Yan, Y. Geng, Hydro-liquefaction of woody biomass for bio-oil in supercritical solvent with [BMIM]Cl/NiCl2 catalyst. Appl. Petrochem. Res. 5(4), 363–369 (2015)

    Article  CAS  Google Scholar 

  40. J. Hu, D. Shen, S. Wu, H. Zhang, R. Xiao, Composition analysis of organosolv lignin and its catalytic solvolysis in supercritical alcohol. Energy Fuels 28(7), 4260–4266 (2014)

    Article  CAS  Google Scholar 

  41. H. Ben, A.J. Ragauskas, NMR characterization of pyrolysis oils from kraft lignin. Energy Fuels 25(5), 2322–2332 (2011)

    Article  CAS  Google Scholar 

  42. A. Jha, A.C. Garade, S.P. Mirajkar, C.V. Rode, MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein. Ind. Eng. Chem. Res. 51(10), 3916–3922 (2012)

    Article  CAS  Google Scholar 

  43. P. Chen, Q. Zhang, R. Shu, Y. Xu, L. Ma, T. Wang, Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Biores. Technol. 226, 125–131 (2017)

    Article  CAS  Google Scholar 

  44. W.-S. Chen, C.-P. Huang, Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound. Chem. Eng. J. 266, 279–288 (2015)

    Article  CAS  Google Scholar 

  45. J. Zakzeski, A.L. Jongerius, P.C. Bruijnincx, B.M. Weckhuysen, Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. Chemsuschem 5(8), 1602–1609 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. F. Meng, Y. Wang, S. Wang, Methanol to gasoline over zeolite ZSM-5: improved catalyst performance by treatment with HF. RSC Adv. 6(63), 58586–58593 (2016)

    Article  CAS  Google Scholar 

  47. A.M. Hussein, A.H. Mady, S. Mahmoud, J.J. Shim, F.Z. Yehia, Synthesis of polyoxometalates supported on HZSM-5 for the photocatalytic purification of crude terephthalic acid under mild conditions. J. Photochem. Photobiol. A 377, 173–181 (2019)

    Article  CAS  Google Scholar 

  48. S. Zhao, G. Xu, J. Chang, C. Chang, J. Bai, S. Fang, Z. Liu, Direct production of ethyl levulinate from carbohydrates catalyzed by H-ZSM-5 supported phosphotungstic acid. BioResources 10(2), 2223–2234 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports by National Natural Science Foundation of China (Grant Nos. 31170554 and 31470604), and the Open Foundation of the State Key Laboratory of Pulp and Papermaking Engineering, South China University of Technology (Grant No. 201803).

Author information

Authors and Affiliations

Authors

Contributions

HZ: Writing-review & editing. BD: Writing-original draft and Writing-review & editing. ZZ: Writing-original draft, Resources and Software. XW: Formal analysis. YS: Conceptualization and Data curation. BL: Project administration and Supervision. JZ: Validation.

Corresponding authors

Correspondence to Xing Wang or Jinghui Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Du, B., Zhang, Z. et al. Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols. J Porous Mater 29, 445–457 (2022). https://doi.org/10.1007/s10934-021-01176-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01176-z

Keywords