Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Upward Curvature of the Upper Critical Field and the V-Shaped Pressure Dependence of T c in the Noncentrosymmetric Superconductor PbTaSe2

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The temperature evolution of the upper critical field H c2(T) in the noncentrosymmetric superconductor PbTaSe2 was determined via resistivity measurements down to 0.5 K. A pronounced positive curvature in the H c2-T phase diagram was observed in the whole temperature range below T c . The Seebeck coefficient S(T) in the temperature range 5K ≤ T ≤ 350 K was found to be negative in sign, modest in magnitude and non-linear in temperature. In addition, the superconducting transition temperature T c under hydrostatic pressure shows a marked non-monotonic variation, decreasing initially with the applied pressure up to P c ∼5–10 kbar but then rising with further pressurization. The underlying physical mechanisms of all these findings have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1
Fig.  2
Fig.  3
Fig.  4
Fig.  5

Similar content being viewed by others

References

  1. Bauer, E., Hilscher, G., Michor, H., Paul, C., Scheidt, E.W., Gribanov, A., Seropegin, Y., Noel, H., Sigrist, M., Rogl, P.: Phys. Rev. Lett. 92, 027003 (2004)

    Article  ADS  Google Scholar 

  2. Yuan, H.Q., Agterberg, D.F., Hayashi, N., Badica, P., Vandervelde, D., Togano, K., Sigrist, M., Salamon, M.B.: Phys. Rev. Lett. 97, 017006 (2006)

    Article  ADS  Google Scholar 

  3. Chen, J., Jiao, L., Zhang, J.L., Chen, Y., Yang, L., Nicklas, M., Steglich, F., Yuan, H.Q.: Phys. Rev. B. 88, 144510 (2013)

    Article  ADS  Google Scholar 

  4. Tafti, F.F., et al.: Phys. Rev. B. 87, 184504 (2013)

    Article  ADS  Google Scholar 

  5. Shimozawa, M., Goh, S.K., Endo, R., Kobayashi, R., Watashige, T., Mizukami, Y., Ikeda, H., Shishido, H., Yanase, Y., Terashima, T., Shibauchi, T., Matsuda, Y.: Phys. Rev. Lett. 112, 156404 (2014)

    Article  ADS  Google Scholar 

  6. Nishiyama, M., Inada, Y., Zheng, G.Q.: Phys. Rev. Lett. 98, 047002 (2007)

    Article  ADS  Google Scholar 

  7. Chadov, S., Qi, X., Kbler, J., Fecher, G.H., Felser, C., Zhang, S.C.: Nat. Mater. 9, 541 (2010)

    Article  ADS  Google Scholar 

  8. Lu, C.K., Yip, S.K.: Phys. Rev. B. 82, 104501 (2010)

    Article  ADS  Google Scholar 

  9. Hasan, M.Z., Kane, C.L.: Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  10. Ali, M.N., Gibson, Q.D., Klimczuk, T., Cava, R.J.: Phys. Rev. B. 89, 020505 (2014)

    Article  ADS  Google Scholar 

  11. Bian G., et al.: arXiv:1505.03069

  12. Niu, C.Q., Yang, J.H., Li, Y.K., Chen, B., Zhou, N., Chen, J., Jiang, L.L., Chen, B., Yang, X.X., Cao, C., Dai, J., Xu, X.: Phys. Rev. B. 88, 104507 (2013)

    Article  ADS  Google Scholar 

  13. Zhou, N., Xu, X., Wang, J.R., Yang, J.H., Li, Y.K., Guo, Y., Yang, W.Z., Niu, C.Q., Chen, B., Cao, C., Dai, J.: Phys. Rev. B. 90, 094520 (2014)

    Article  ADS  Google Scholar 

  14. Tafti, F.F., et al.: Nat. Phys. 9, 349 (2013)

    Article  Google Scholar 

  15. Tafti, F.F., et al.: Phys. Rev. B. 89, 134502 (2014)

    Article  ADS  Google Scholar 

  16. Tafti, F.F., et al.: Phys. Rev. B. 91, 054511 (2015)

    Article  ADS  Google Scholar 

  17. Xu, X., Bangura, A.F., Niu, C.Q., Greenblatt, M., Yue, S., Panagopoulos, C., Hussey, N.E.: Phys. Rev. B. 85, 195101 (2012)

    Article  ADS  Google Scholar 

  18. Wakeham, N., Bangura, A.F., Xu, X., Mercure, J.F., Greenblatt, M., Hussey, N.E.: Nat. Commun. 2, 396 (2011)

    Article  ADS  Google Scholar 

  19. Bangura, A.F., Xu, X., Wakeham, N., Peng, N., Horii, S., Hussey, N.E.: Sci. Rep. 3, 3261 (2013)

    Article  ADS  Google Scholar 

  20. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Cornell University Press, Cornell (1975)

    Google Scholar 

  21. Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)

    Article  ADS  Google Scholar 

  22. Hunte, F., et al.: Nature 453, 903 (2008)

    Article  ADS  Google Scholar 

  23. de Lima, O.F., Ribeiro, R.A., Avila, M.A., Cardoso, C.A., Coelho, A.A.: Phys. Rev. Lett. 86, 5974 (2001)

    Article  ADS  Google Scholar 

  24. Mun, E., Ni, N., Allred, J.M., Cava, R.J., Ayala, O., McDonald, R.D., Harrison, N., Zapf, V.S.: Phys. Rev. B. 85, 100502 (2012)

    Article  ADS  Google Scholar 

  25. Gurevich, A.: Phys. Rev. B. 67, 184515 (2003)

    Article  ADS  Google Scholar 

  26. In principle, the Hall effect may be used to identify the multiband behaviors. However, the Hall signal in this material is difficult to measure, possibly because of two reasons. First, in the Hall measurements, the sample needs to be thin in order to get large Hall signals, however, our sample is very hard to be cleaved or polished to a thin plate. Second, in a two-carrier model, the Hall coefficient at low fields is given by R H = \(\frac {{\sigma _{h}^{2}} R_{h} +{\sigma _{e}^{2}} R_{e}}{(\sigma _{h} +\sigma _{e})^{2}}\), where σ e(h) and R e(h) are the conductivity and Hall coefficient of e(h) carriers, respectively (Note that R e and R h are opposite in sign). The resultant Hall effect may become very small due to the substantial cancellation of hole and electron components.

  27. Lee, I.J., Naughton, M.J., Danner, G.M., Chaikin, P.M.: Phys. Rev. Lett. 78, 3555 (1997)

    Article  ADS  Google Scholar 

  28. Mackenzie, A.P., Julian, S.R., Lonzarich, G.G., Carrington, A., Hughes, S.D., Liu, R.S., Sinclair, D.C.: Phys. Rev. Lett. 71, 1238 (1993)

    Article  ADS  Google Scholar 

  29. Osofsky, M.S., et al.: Phys. Rev. Lett. 71, 2315 (1993)

    Article  ADS  Google Scholar 

  30. Kotliar, G., Varma, C.M.: Phys. Rev. Lett. 77, 2296 (1996)

    Article  ADS  Google Scholar 

  31. Ovchinnikov, Y.N., Kresin, V.Z.: Phys. Rev. B. 54, 1251 (1996)

    Article  ADS  Google Scholar 

  32. Ovchinnikov, Y.N., Kresin, V.Z.: Phys. Rev. B. 52, 3075 (1995)

    Article  ADS  Google Scholar 

  33. Cohn, J.L., White, B.D., dos Santos, C.A.M., Neumeier, J.J.: Phys. Rev. Lett. 108, 056604 (2012)

    Article  ADS  Google Scholar 

  34. Cohn, J.L., Moshfeghyeganeh, S., dos Santos, C.A.M., Neumeier, J.J.: Phys. Rev. Lett. 112, 186602 (2014)

    Article  ADS  Google Scholar 

  35. Behnia, K.J.: Phys. Condens. Matter. 21, 113101 (2009)

    Article  ADS  Google Scholar 

  36. Xu, Y., Gan, Z., Zhang, S.C.: Phys. Rev. Lett. 112, 226801 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank N. E. Hussey, C. M. J. Andrew, C. Lester, A. F. Bangura, Xin Lu, Zengwei Zhu, Xiaofeng Jin for valuable discussions. This work was supported by the National Key Basic Research Program of China (Grant No. 2014CB648400) and by NSFC (Grant No. 11474080, 11104051, 11104053). X.X. would also like to acknowledge the auspices from the Distinguished Young Scientist Funds of Zhejiang Province (LR14A040001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, X., Zhou, N. et al. Upward Curvature of the Upper Critical Field and the V-Shaped Pressure Dependence of T c in the Noncentrosymmetric Superconductor PbTaSe2 . J Supercond Nov Magn 28, 3173–3178 (2015). https://doi.org/10.1007/s10948-015-3177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3177-4

Keywords