Abstract
The temperature evolution of the upper critical field H c2(T) in the noncentrosymmetric superconductor PbTaSe2 was determined via resistivity measurements down to 0.5 K. A pronounced positive curvature in the H c2-T phase diagram was observed in the whole temperature range below T c . The Seebeck coefficient S(T) in the temperature range 5K ≤ T ≤ 350 K was found to be negative in sign, modest in magnitude and non-linear in temperature. In addition, the superconducting transition temperature T c under hydrostatic pressure shows a marked non-monotonic variation, decreasing initially with the applied pressure up to P c ∼5–10 kbar but then rising with further pressurization. The underlying physical mechanisms of all these findings have been discussed.
Similar content being viewed by others
References
Bauer, E., Hilscher, G., Michor, H., Paul, C., Scheidt, E.W., Gribanov, A., Seropegin, Y., Noel, H., Sigrist, M., Rogl, P.: Phys. Rev. Lett. 92, 027003 (2004)
Yuan, H.Q., Agterberg, D.F., Hayashi, N., Badica, P., Vandervelde, D., Togano, K., Sigrist, M., Salamon, M.B.: Phys. Rev. Lett. 97, 017006 (2006)
Chen, J., Jiao, L., Zhang, J.L., Chen, Y., Yang, L., Nicklas, M., Steglich, F., Yuan, H.Q.: Phys. Rev. B. 88, 144510 (2013)
Tafti, F.F., et al.: Phys. Rev. B. 87, 184504 (2013)
Shimozawa, M., Goh, S.K., Endo, R., Kobayashi, R., Watashige, T., Mizukami, Y., Ikeda, H., Shishido, H., Yanase, Y., Terashima, T., Shibauchi, T., Matsuda, Y.: Phys. Rev. Lett. 112, 156404 (2014)
Nishiyama, M., Inada, Y., Zheng, G.Q.: Phys. Rev. Lett. 98, 047002 (2007)
Chadov, S., Qi, X., Kbler, J., Fecher, G.H., Felser, C., Zhang, S.C.: Nat. Mater. 9, 541 (2010)
Lu, C.K., Yip, S.K.: Phys. Rev. B. 82, 104501 (2010)
Hasan, M.Z., Kane, C.L.: Rev. Mod. Phys. 82, 3045 (2010)
Ali, M.N., Gibson, Q.D., Klimczuk, T., Cava, R.J.: Phys. Rev. B. 89, 020505 (2014)
Bian G., et al.: arXiv:1505.03069
Niu, C.Q., Yang, J.H., Li, Y.K., Chen, B., Zhou, N., Chen, J., Jiang, L.L., Chen, B., Yang, X.X., Cao, C., Dai, J., Xu, X.: Phys. Rev. B. 88, 104507 (2013)
Zhou, N., Xu, X., Wang, J.R., Yang, J.H., Li, Y.K., Guo, Y., Yang, W.Z., Niu, C.Q., Chen, B., Cao, C., Dai, J.: Phys. Rev. B. 90, 094520 (2014)
Tafti, F.F., et al.: Nat. Phys. 9, 349 (2013)
Tafti, F.F., et al.: Phys. Rev. B. 89, 134502 (2014)
Tafti, F.F., et al.: Phys. Rev. B. 91, 054511 (2015)
Xu, X., Bangura, A.F., Niu, C.Q., Greenblatt, M., Yue, S., Panagopoulos, C., Hussey, N.E.: Phys. Rev. B. 85, 195101 (2012)
Wakeham, N., Bangura, A.F., Xu, X., Mercure, J.F., Greenblatt, M., Hussey, N.E.: Nat. Commun. 2, 396 (2011)
Bangura, A.F., Xu, X., Wakeham, N., Peng, N., Horii, S., Hussey, N.E.: Sci. Rep. 3, 3261 (2013)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Cornell University Press, Cornell (1975)
Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)
Hunte, F., et al.: Nature 453, 903 (2008)
de Lima, O.F., Ribeiro, R.A., Avila, M.A., Cardoso, C.A., Coelho, A.A.: Phys. Rev. Lett. 86, 5974 (2001)
Mun, E., Ni, N., Allred, J.M., Cava, R.J., Ayala, O., McDonald, R.D., Harrison, N., Zapf, V.S.: Phys. Rev. B. 85, 100502 (2012)
Gurevich, A.: Phys. Rev. B. 67, 184515 (2003)
In principle, the Hall effect may be used to identify the multiband behaviors. However, the Hall signal in this material is difficult to measure, possibly because of two reasons. First, in the Hall measurements, the sample needs to be thin in order to get large Hall signals, however, our sample is very hard to be cleaved or polished to a thin plate. Second, in a two-carrier model, the Hall coefficient at low fields is given by R H = \(\frac {{\sigma _{h}^{2}} R_{h} +{\sigma _{e}^{2}} R_{e}}{(\sigma _{h} +\sigma _{e})^{2}}\), where σ e(h) and R e(h) are the conductivity and Hall coefficient of e(h) carriers, respectively (Note that R e and R h are opposite in sign). The resultant Hall effect may become very small due to the substantial cancellation of hole and electron components.
Lee, I.J., Naughton, M.J., Danner, G.M., Chaikin, P.M.: Phys. Rev. Lett. 78, 3555 (1997)
Mackenzie, A.P., Julian, S.R., Lonzarich, G.G., Carrington, A., Hughes, S.D., Liu, R.S., Sinclair, D.C.: Phys. Rev. Lett. 71, 1238 (1993)
Osofsky, M.S., et al.: Phys. Rev. Lett. 71, 2315 (1993)
Kotliar, G., Varma, C.M.: Phys. Rev. Lett. 77, 2296 (1996)
Ovchinnikov, Y.N., Kresin, V.Z.: Phys. Rev. B. 54, 1251 (1996)
Ovchinnikov, Y.N., Kresin, V.Z.: Phys. Rev. B. 52, 3075 (1995)
Cohn, J.L., White, B.D., dos Santos, C.A.M., Neumeier, J.J.: Phys. Rev. Lett. 108, 056604 (2012)
Cohn, J.L., Moshfeghyeganeh, S., dos Santos, C.A.M., Neumeier, J.J.: Phys. Rev. Lett. 112, 186602 (2014)
Behnia, K.J.: Phys. Condens. Matter. 21, 113101 (2009)
Xu, Y., Gan, Z., Zhang, S.C.: Phys. Rev. Lett. 112, 226801 (2014)
Acknowledgments
The authors would like to thank N. E. Hussey, C. M. J. Andrew, C. Lester, A. F. Bangura, Xin Lu, Zengwei Zhu, Xiaofeng Jin for valuable discussions. This work was supported by the National Key Basic Research Program of China (Grant No. 2014CB648400) and by NSFC (Grant No. 11474080, 11104051, 11104053). X.X. would also like to acknowledge the auspices from the Distinguished Young Scientist Funds of Zhejiang Province (LR14A040001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J., Xu, X., Zhou, N. et al. Upward Curvature of the Upper Critical Field and the V-Shaped Pressure Dependence of T c in the Noncentrosymmetric Superconductor PbTaSe2 . J Supercond Nov Magn 28, 3173–3178 (2015). https://doi.org/10.1007/s10948-015-3177-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10948-015-3177-4