Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coexistence of Weak and Strong Coupling Mechanism, in an Iron-Based Superconductor FeSe 0.5 Te 0.5: Possible Signature of BCS-BEC Crossover

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we present the scanning tunneling microscopy/spectroscopy (STM/STS) studies of an iron-based superconductor, F e S e 0.5 T e 0.5. We obtained differential conductance (dI/dV) spectra and extracted the value of the superconducting order parameter Δ using extended Bardeen Cooper Schieffer (BCS) phenomenology for anisotropic s-wave pairing. We observed widespread values of Δ from ∼0.6 to ∼4.5 meV, with distinct two peaks in the histogram around 1 and 3 meV. The corresponding values of 2Δ/k B T c for the peaks are ∼1.5 and ∼5.0, respectively, indicating coexistence of weak and strong coupling mechanism. We also found two different coupling mechanisms through Δ to Fermi energy ratio (Δ/E f ) of the material; which infers to the possible composite superconductivity in the realm of BCS-Bose Einstein Condensate (BEC) crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kamihara, Y. et al.: Iron-based layered superconductor La[O (1−x) F (x)]FeAs(x = 0.05 − 0.12) with T C = 26 K. J.Am. Chem. Soc. 130, 3296 (2008)

  2. Takahashi, H., et al.: Superconductivity at 43 K in an iron-based layered compound L a o 1−x f x F e A s. Nature 453, 376 (2008)

    Article  ADS  Google Scholar 

  3. Cheng, P., et al.: High t C superconductivity induced by doping rare earth elements into CaFeAsF. Europhys. Lett. 85, 67003 (2009)

    Article  ADS  Google Scholar 

  4. Yang, J., et al.: Superconductivity at 53.5 K in G d F e A s O(1). Supercond. Sci. Technol. 21, 082001 (2008)

    Article  ADS  Google Scholar 

  5. Wang, C., et al.: Thorium-doping–induced superconductivity up to 56 K in Gd 1−x Th x FeAsO. Europhys. Lett. 83, 67006 (2008)

  6. Wu, G., et al.: Superconductivity at 56 K in samarium-doped SrFeAsF. J. Phys. Condens. Matter 21, 142203 (2009)

    Article  ADS  Google Scholar 

  7. Niestemski, F. C., Kunwar, S., Zhou, S., et al.: A distinct bosonic mode in an electron-doped high-transition temperature superconductor. Nature 450, 1058 (2007)

    Article  ADS  Google Scholar 

  8. Zhao, J., Niestemski, F. C., Kunwar, S., et al.: Electron-spin excitation coupling in an electron-doped copper oxide superconductor. Nat. Phys. 7, 719 (2011)

    Article  Google Scholar 

  9. Chen, T. Y., et al.: A BCS-like gap in the superconductor S m F e A s O 0.85 F 0.15. Nature 453, 26 (2008)

    ADS  Google Scholar 

  10. Song, C. L., et al.: Dopant clustering, electronic inhomogeneity, and vortex pinning in iron-based superconductors. Phys. Rev. B 87, 214519 (2013)

    Article  ADS  Google Scholar 

  11. Shan, L., et al.: Observation of ordered vortices with Andreev bound states in B a 0.6 K 0.4 F e 2 A s 2. Nat. Phys. 7, 325 (2011)

    Article  Google Scholar 

  12. Venzmer, E., et al.: Superconducting energy gap features of FeSe investigated by tunneling spectroscopy on planar junctions. J. Supercond. Nov. Magn. 29, 897 (2016)

    Article  Google Scholar 

  13. Hsu, F. C., et al.: Superconductivity in the PbO-type structure — FeSe. PNAS 105, 14262 (2008)

    Article  ADS  Google Scholar 

  14. Kazumasa, H., et al.: First investigation of pressure effects on transition from superconductive to metallic phase in F e S e 0.5 T e 0.5. J. Phys. Soc. Jpn. 78, 063705 (2009)

    Article  Google Scholar 

  15. Fong-Chi, H., et al.: Superconductivity in the PbO-type structure αF e S e. PNAS 105, 14262 (2008)

    Article  ADS  Google Scholar 

  16. Kato, T., et al.: Local density of states and superconducting gap in the iron chalcogenide superconductor F e S e (1−x) T e x observed by scanning tunneling spectroscopy. Chin. Phys. Lett. 29, 037402 (2012)

    Article  ADS  Google Scholar 

  17. Dong, X.L. et al.: (L i 0.84 F e 0.16)O H F e 0.98 S E superconductor: ion-exchange synthesis of large single-crystal and highly two-dimensional electron properties. Phys. Rev. B 92, 064515 (2015)

    Article  ADS  Google Scholar 

  18. Pan, S. H., et al.: Microscopic electronic inhomogeneity in the high-Tc superconductor B i 2,S r 2 C a C u 2 O 8 + x . Nature 413, 282 (2001)

    Article  ADS  Google Scholar 

  19. Fischer, M., et al.: Kugler scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  20. Kunwar, S., et al.: Large in-plane Elastic Scattering due to Cu-vacancies in an electron doped superconductor. J. Phys. Con. 449, 012008 (2013)

    Article  Google Scholar 

  21. Kunwar, S.: Existence of pseudogap at the transition temperature of an electron-doped copper–oxide superconductor. J Supercond. Nov. Magn. 22, 2461 (2014)

    Article  Google Scholar 

  22. Pasupathy, A. N., et al.: Electronic origin of the inhomogeneous pairing interaction in the high-Tc superconductor B i 2 S r 2 C a C u 2 O 8+. Sci. 320, 196 (2008)

    Article  ADS  Google Scholar 

  23. Mazin, I., et al.: Unconventional sign-reversing superconductivity in L a F e A s O 1x F x . Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  24. Kuroki, K., et al.: Unconventional pairing originating from the disconnected fermi surfaces of superconducting L a F e A s O 1x F x . Phys. Rev. Lett. 101, 087004 (2008)

    Article  ADS  Google Scholar 

  25. Hanaguri, T., et al.: Unconventional s-wave superconductivity in Fe(Se, Te). Science 328, 474 (2010)

    Article  ADS  Google Scholar 

  26. Zhang, X., et al.: Observation of the Josephson effect in P b/B a 1X K X F e 2 A s 2 single crystal junctions. Phys. Rev. Lett. 102, 147002 (2009)

    Article  ADS  Google Scholar 

  27. Chen, C. T., et al.: Integer and half-integer flux-quantum transitions in a niobium–iron pnictide loop. Nat. Phys. 6, 260 (2010)

    Article  Google Scholar 

  28. Bang, Y., et al.: Superfluid density of the s-wave state for the iron-based superconductors. EPL 86, 47001 (2009)

    Article  ADS  Google Scholar 

  29. Wang, Q. Y., et al.: Interface-induced high-temperature superconductivity in single unit-cell FeSe films on S r T i O 3. Chin. Phys. Lett. 29, 037402 (2012)

    Article  ADS  Google Scholar 

  30. Lee, J. J., et al.: Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on S r T i O 3. Nature 515, 245 (2014)

    Article  ADS  Google Scholar 

  31. Zengyi, D., et al.: Scrutinizing the double superconducting gaps and strong coupling pairing in (L i 1−x F e x )O H F e S e. Nat. Commun. 7, 10565 (2016)

    Article  Google Scholar 

  32. Yin, J. -X., et al.: Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te, Se). Nat. Phys. 11, 543 (2015)

    Article  Google Scholar 

  33. Lin, K. C., et al.: Tunneling spectra and superconducting gaps observed by scanning tunneling microscopy near the grain boundaries of F e S e 0.3 T e 0.7 films. Phys. C 495, 74 (2013)

    Article  ADS  Google Scholar 

  34. He, S. L., et al.: Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605 (2013)

    Article  ADS  Google Scholar 

  35. Defa, L., et al.: Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931 (2012)

    Article  Google Scholar 

  36. Miao, H., et al.: Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in F e T e 0.55 S e 0.45. Phys. Rev. B 85, 094506 (2012)

    Article  ADS  Google Scholar 

  37. Tan, S. Y., et al.: Interface-induced superconductivity and strain-dependent spin density waves in F e S e/S r T i O 3 thin films. Nat. Mater. 12, 634 (2013)

    Article  ADS  Google Scholar 

  38. Okazaki, K., et al.: Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity. Scientific Report 4, 4109 (2014)

    Article  Google Scholar 

  39. Liu, X., et al.: Electronic structure and superconductivity of FeSe-related superconductors. J. Phys.: Condens. Matter 27, 183201 (2015)

    ADS  Google Scholar 

  40. Kasahara, S., et al.: Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. PNAS 111, 16309 (2014)

    Article  ADS  Google Scholar 

  41. Lubashevsky, Y., et al.: Shallow pockets and very strong coupling superconductivity in F e A e x T e 1−x . Nat. Phys. 8, 309 (2012)

    Article  Google Scholar 

  42. Guidini, A., et al.: BCS-BEC Crossover in quantum confined superconductors. J. Supercond. Nov. Magn. 29, 711 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Prof. Vidya Madhavan from Boston College (currently at UIUC) for the valuable discussion. We would also like to acknowledge the support of the National Science and Technology Innovative Plan (NSTIP), Kingdom of Saudi Arabia, under the project 14-MAT362-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kunwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunwar, S., Hamad, R.M. & Ziq, K.A. Coexistence of Weak and Strong Coupling Mechanism, in an Iron-Based Superconductor FeSe 0.5 Te 0.5: Possible Signature of BCS-BEC Crossover. J Supercond Nov Magn 30, 3183–3188 (2017). https://doi.org/10.1007/s10948-017-4103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4103-8

Keywords