Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mass Enhancements and Band Shifts in Strongly Hole-Overdoped Fe-Based Pnictide Superconductors: KFe2As2 and CsFe2As2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The interplay of high- and low-energy mass renormalizations with band shifts reflected by the positions of van Hove singularities (VHS) in the normal-state spectrum of the most strongly hole-overdoped correlated AFe2As2 (A122) with A=K, Cs is discussed phenomenologically from ARPES data and band-structure (GGA) calculations with full spin-orbit coupling. The big increase of the Sommerfeld coefficient γ from K122 to Cs122 is ascribed to an enhanced coupling to low-energy bosons in the vicinity of a quantum critical point to an unknown, yet incommensurate phase different from the commensurate Mott one. We find no sizeable increase in correlations for Cs122 in contrast to Eilers et al. (Phys. Rev. Lett. 116, 237003 2016). The empirical (ARPES) VHS positions as compared with GGA predictions point even to slightly weaker correlations in Cs122 in accord with low-T magnetic susceptibility χ(T) data and a decreasing Wilson ratio ∝ χ(0)/γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. (Scanning tunneling measurements). It includes in our opinion, however, an artificial upshift of about 10 meV of the entire ARPES spectrum, see also Section 5.

  2. In our calculations of the DOS, see Fig. 1, we have used that of Perdew et al. [15, 16].

  3. We mention that among a large number of known (until 2000) heavy-fermion superconductors, only three of them (CeCu2Si2, UPt3, and UBe13) exhibiting surprisingly formally “free electron” Wilson ratios R W ≈ 1 [23].

  4. Note that our results differ quantitatively by a systematic shift of nearly 10 meV for the entire spectrum as compared to Ref. [4], and even qualitatively in that previous Cs122-STM [5] showed no VHS at all. We speculatively ascribe this to surface reconstructions and charging in those samples most detrimental for STM. The position in STM of the VHS was given as -5 to -6 meV for K122.

  5. Beyond the error bars of about 2 meV for sharp peaks.

References

  1. Drechsler, S.-L., Johnston, S., Grinenko, V., Tomczak, J.M., Rosner, H.: Constraints on the total coupling strength to bosons in the iron based superconductors. Phys. Stat. Solidi (b) 254(10), 1700006 (2017)

    Article  ADS  Google Scholar 

  2. Kawaguchi, N., Fujiwara, S., Iimura, S., Matsuishi, S., Hosono, H.: Experimental evidence of T c enhancement without the influence of spin fluctuations: NMR study on LaFeAsO1−xH x under a pressure of 3.0 GPa. Phys. Rev. B 95, 16104(R) (2016)

    Google Scholar 

  3. Eilers, F., Grube, K., Zocco, D.A., Wolf, T., Merz, M., Schweiss, P., Heid, R., Eder, R., Yu, R.R., Zhu, J.-X., Si, Q., Shibauchi, T., Löhneysen, H.v.: Quantum criticality in AFe2As2 with A=K, Rb, and Cs suppresses superconductivity. Phys. Rev. Lett. 116, 237003 (2016)

    Article  ADS  Google Scholar 

  4. Fang, D., Shi, X., Du, Z., Richard, P., Yang, H., Wu, X.X., Zhang, P., Qian, T., Ding, X., Wang, Z., Kim, T.K., Hoesch, M., Wang, A., Chen, X., Hu, J., Ding, H., Wen, H.-H.: Observation of a van Hove singularity and implication for strong coupling induced Cooper pairing in KFe2As2. Phys. Rev. B 92, 144513 (2015)

    Article  ADS  Google Scholar 

  5. Yang, H., Xing, J., Du, Z., Yang, X., Lin, H., Fang, D., Zhu, X., Wen, H.-H.: Possible superconducting fluctuations and pseudogap state above T c in CsFe2As2. Phys. Rev. B 93, 224516 (2016)

    Article  ADS  Google Scholar 

  6. Efremov, D.V., Drechsler, S.-L., Rosner, H., Grinenko, V., Dolgov, O.: A multiband Eliashberg-approach to iron-based superconductors. Phys. Stat. Solidi (b) 254(7), 1600828 (2017)

    Article  ADS  Google Scholar 

  7. Abdel-Hafiez, M., Aswartham, S., Wurmehl, S., Grinenko, V., Hess, C., Drechsler, S.-L., Johnston, S., Wolter, A.U.B., Büchner, B., Rosner, H., Boeri, L.: Specific heat and upper critical fields in KFe2As2 single crystals. Phys. Rev. B 85, 134533 (2012)

    Article  ADS  Google Scholar 

  8. Abdel-Hafiez, M., Grinenko, V., Aswartham, S., Morozov, I., Roslova, M., Vakaliuk, O., Johnston, S., Efremov, D., van den Brink, J., Rosner, H., Kumar, M., Hess, C., Wurmehl, S., Wolter, A.U.B., Büchner, B., Green, E., Wosnitza, J., Vogt, P., Reifenberger, A., Enss, C., Hempel, M., Klingeler, R., Drechsler, S.-L.: Evidence of d-wave superconductivity in K1xNa x Fe2A2 (x = 0,0.1) single crystals from low-temperature specific-heat measurements. Phys. Rev. B 87, 180507(R) (2013)

    Article  ADS  Google Scholar 

  9. Grinenko, V., Efremov, D.V., Drechsler, S.-L., Aswartham, S., Gruner, D., Roslova, M., Morozov, I., Nenkov, K., Wurmehl, S., Wolter, A.U.B., Holzapfel, B., Büchner, B.: Superconducting specific-heat jump \(\Delta C_{el}T^{\beta }_{c} (2)\) for K1−xNa x Fe2As2. Phys. Rev. B 89, 060504(R) (2014)

    Article  ADS  Google Scholar 

  10. Kihou, K., Saito, T., Fujita, K., Ishida, S., Nakajima, M., Horigane, K., Fukazawa, H., Kohori, Y., Uchida, S., Akimitsu, J., Iyo, A., Lee, C.-H., Eisaki, H.: Single-crystal growth of Ba1xK x Fe2As2 by KAs self-flux method. J. Phys. Soc. Jpn. 85, 034718 (2016)

    Article  ADS  Google Scholar 

  11. Yoshida, T., Ideta, S., Nishi, I., Fujimori, A., Yi, M., Moore, R.G., Mo, S.K., Lu, D.-H., Shen, S.Z., Hussain, Z., Kihou, K., Shirage, P.M., Kito, H., Lee, C.-H., Iyo, A., Eisaki, H., Harima, H.: Orbital-dependent electron correlation effect on the two- and three-dimensional Fermi surfaces in KFe2As2revealed by angle-resolved photoemission spectroscopy. Front. Phys. 2, 17 (2014)

    Article  Google Scholar 

  12. Hardy, F., Eder, R., Jackson, M., Dai, A., Paulsen, C., Wolf, T., Burger, P.A., Boehmer, P., Schweiss, P., Elmann, A., Fisher, R.A., Meingast, C.: Multiband superconductivity in KFe2As2: evidence for one isotropic and several Liliputian energy gaps. J. Jpn. Phys. Soc. 83, 014711 (2013)

    Article  ADS  Google Scholar 

  13. Hardy, F., Böhme, A., de Medici, L., Capone, M., Giovannetti, G., Eder, R., Wang, L., He, M., Wolf, T., Schweiss, P., Heid, R., Herbig, A., Adelmann, P., Fisher, R.A., Meingast, C.: Strong correlations, strong coupling, and s-wave superconductivity in hole-doped BaFe2As2 single crystals. Phys. Rev. B 94, 205113 (2016)

    Article  ADS  Google Scholar 

  14. Reid, J.-P.h., Tanatar, M.A., Juneau-Fecteau, A., Gordon, R.T., Rene de Cotret, S., Doiron-Leyraud, N., Saito, T., Fukazawa, H., Kohori, Y., Kihou, K., Lee, C.-H., Iyo, A., Eisaki, H., Prozorov, R., Taillefer, L.: Universal heat conduction in the iron-arsenide superconductor KFe2As2: evidence of a d-wave state. Phys. Rev. Lett. 109, 087001 (2012)

    Article  ADS  Google Scholar 

  15. Perdew, J., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  16. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  17. Kotani, T., van Schilfgaarde, M., Faleev, S.V.: Quasiparticle self-consistent GW method: a basis for the independent-particle approximation. Phys. Rev. B 76, 165106 (2007)

    Article  ADS  Google Scholar 

  18. Tomczak, J.M., van Schilfgaarde, M., Kotliar, G.: Many-body effects in iron pnictides and chalcogenides – non-local vs. dynamic origin of effective masses. Phys. Rev. Lett. 109, 237010 (2012)

    Article  ADS  Google Scholar 

  19. Tomczak, J.M.: QSGW+DMFT: An electronic structure scheme for the iron pnictides and beyond. J. Phys.: Conf. Ser. 592, 012055 (2015)

    Google Scholar 

  20. Wu, Y.P., Zhao, D., Wang, A.F.N.Z., Wang, Z., Xiang, J., Luo, X.G., Wu, T., Chen, X.H.: Emergent Kondo scaling in iron-based superconductors AFe2,As2 (A= K, Rb, Cs). Phys. Rev. Lett. 116, 147001 (2015)

    Article  ADS  Google Scholar 

  21. Liu, Y., Lograsso, T.A.: Crossover in the magnetic response of single-crystalline Ba1xK x Fe2As2 and Lifshitz critical point evidenced by Hall effect measurements. Phys. Rev. B 90, 224508 (2014)

    Article  ADS  Google Scholar 

  22. Grinenko, V., Materne, P., Sarkar, R., Luetkens, H., Kihou, K., Lee, C.-H., Akhmadaliev, S., Efremov, D., Drechsler, S.-L., Klauss, H.-H.: Superconductivity with broken time reversal symmetry in ion irradiated Ba0.27K0.73Fe2As2 single crystals. ibid. 95, 214511 (2017)

    ADS  Google Scholar 

  23. Radousky, H.: Magnetism in Heavy Fermion Compounds. World Scientific, Singapore (2000)

    Book  Google Scholar 

  24. Backes, S., Jeschke, H.O., Valenti, R.: Microscopic nature of correlations in multi-orbital AFe2As2 (A=K, Rb, Cs): hund’s coupling versus Coulomb repulsion. Phys. Rev. B 92, 195128 (2015)

    Article  ADS  Google Scholar 

  25. Tomczak, J.M., Liu, P., Toschi, A., Kresse, G., Held, K.: Merging GW with DMFT and non-local correlations beyond. Eur. Phys. J. Special Topics 226, 2565 (2017)

    Article  ADS  Google Scholar 

  26. de’ Medici, L.: Hund’s Induced fermi-liquid instabilities and enhanced quasiparticle interactions. Phys. Rev. Lett. 118, 167003 (2017). private comm., to be published

    Article  ADS  Google Scholar 

  27. Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinskii, I.: Quantum field theory methods in statistical physics Fizmatgiz, Moskva (1962), 2nd Edition. PERGAMON-Press, Oxford (1965)

    Google Scholar 

  28. Lee, C.-H., Kihou, K., Kawano-Furukawa, H., Saito, T., Iyo, A., Eisaki, H., Fukazawa, H., Kohori, Y., Suzuki, K., Usui, H., Kuroki, K., Yamada, K.: Incommensurate spin fluctuations in hole-overdoped superconductor KFe2As2. Phys. Rev. Lett. 106, 067003 (2012)

    Article  ADS  Google Scholar 

  29. Zhang, Z.T., Dmytrieva, D., Molatta, S., Wosnitza, J., Khim, S., Gass, S., Wolter, A.U.B., Wurmehl, S., Grafe, H.-J., Kühne, H.: Quantum criticality in AFe2As2 (A = K, Rb, Cs) superconductors probed by 75AsNMR spectroscopy. arXiv:1703.00780v1 (2017)

Download references

Acknowledgements

Discussions with M. Daghofer, D. Efremov, J. Fink, E. Goremychkin, and L. dé Medici are gratefully acknowledged.

Funding

S-LD, SW, SA, LM, and AB thank the Volkswagenstiftung for financial support. IM acknowledges support by the RSF grant No. 16-42-01100. VG and SB are grateful to the DFG for financial support through grant Nos. GR4667 and BO1912/6-1 and BO1912/7-1, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-L. Drechsler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drechsler, SL., Rosner, H., Grinenko, V. et al. Mass Enhancements and Band Shifts in Strongly Hole-Overdoped Fe-Based Pnictide Superconductors: KFe2As2 and CsFe2As2. J Supercond Nov Magn 31, 777–783 (2018). https://doi.org/10.1007/s10948-017-4434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4434-5

Keywords