Abstract
Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter κ=2. In this article we study “off-critical loop erased random walks”, loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=−2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.
Similar content being viewed by others
References
Bauer, M., Bernard, D.: Conformal field theories of stochastic Loewner evolutions. Commun. Math. Phys. 239(3), 493–521 (2003)
Bauer, M., Bernard, D.: SLE, CFT and zig-zag probabilities. In: Proceedings of the Conference ‘Conformal Invariance and Random Spatial Processes’, Edinburgh, July 2003
Bauer, M., Bernard, D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432(3–4), 115–222 (2006)
Bauer, M., Bernard, D., Houdayer, J.: Dipolar SLEs. J. Stat. Mech. 0503, P001 (2005)
Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)
Bauer, M., Bernard, D., Kennedy, T.G.: (2008, in preparation)
Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)
Camia, F., Fontes, L., Newman, C.: The scaling limit geometry of near-critical 2d percolation. J. Stat. Phys. 125(5–6), 1155–1171 (2006). arXiv:cond-mat/0510740
Caracciolo, S., Jacobsen, J.L., Saleur, H., Sokal, A.D., Sportiello, A.: Fermionic field theory for trees and forests. Phys. Rev. Lett. 93, 080601 (2004)
Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996)
Cardy, J.: SLE for theoretical physicists. Ann. Phys. 318(1), 81–118 (2005)
Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002)
Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115(5–6), 1149–1229 (2004)
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. GTM, vol. 113. Springer, Berlin (1991)
Kausch, H.-G.: Symplectic Fermions. Nucl. Phys. B 583, 513–541 (2000)
Kennedy, T.G.: The Length of an SLE—Monte Carlo Studies. J. Stat. Phys. 128(6), 1263–1277 (2007). arXiv:math/0612609v2
Kytölä, K.: On conformal field theory of SLE(kappa, rho). J. Stat. Phys. 123(6), 1169–1181 (2006)
Kytölä, K.: Virasoro module structure of local martingales of SLE variants. Rev. Math. Phys. 19(5), 455–509 (2007)
Lawler, G.F.: Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)
Lawler, G.F.: Dimension and natural parametrization for SLE curves. arXiv:0712.3263 (2007)
Lawler, G.F., Sheffield, S.: Construction of the natural parametrization for SLE curves (2008, in preparation)
Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)
Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Amer. Math. Soc. 16(4), 917–955 (2003). (electronic)
Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)
Majumdar, S.: Exact fractal dimension of the loop-erased self-avoiding walk in two dimensions. Phys. Rev. Lett. 68, 2329–2331 (1992)
Makarov, N., Smirnov, S.: Massive SLEs (2008, in preparation)
Nolin, P., Werner, W.: Asymmetry of near-critical percolation interfaces. arXiv:0710.1470 (2007)
Öksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th ed. Springer Universitext. Springer, Berlin (2003)
Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)
Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118, 221–288 (2000)
Schramm, O., Wilson, D.: SLE coordinate changes. N.Y. J. Math. 11, 659–669 (2005)
Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C.R. Acad. Sci. Paris 333, 239–244 (2001)
Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Lectures on probability theory and statistics. Lecture Notes in Math., vol. 1840, pp. 107–195. Springer, Berlin (0000)
Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, 1996, pp. 296–303. ACM, New York (1996)
Zhan, D.: The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36(2), 467–529 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bauer, M., Bernard, D. & Kytölä, K. LERW as an Example of Off-Critical SLEs. J Stat Phys 132, 721–754 (2008). https://doi.org/10.1007/s10955-008-9569-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-008-9569-0