Abstract
We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.





Similar content being viewed by others
References
Andresen, B.: Current trends in finite-time thermodynamics. Angew. Chem., Int. Ed. Engl. 50, 2690–2704 (2011)
Andrieux, D., Gaspard, P.: Dynamical randomness, information, and Landauer’s principle. Europhys. Lett. 81, 28004 (2008)
Aurell, E., Mejía-Monasterio, C., Muratore-Ginanneschi, P.: Optimal protocols and optimal transport in stochastic thermodynamics. Phys. Rev. Lett. 106, 250601 (2011)
Aurell, E., Mejía-Monasterio, C., Muratore-Ginanneschi, P.: Boundary layers in stochastic thermodynamics. Phys. Rev. E 85, 020103(R) (2012)
Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)
Benamou, J.-D., Brenier, Y.: A numerical method for the optimal time-continuous mass transport problem and related problems. In: Monge Ampère Equation: Applications to Geometry and Optimization. Deerfield Beach, FL, 1997, pp. 1–11. Am. Math. Soc., Providence (1999)
Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (1999)
Bennett, Ch.H.: The thermodynamics of computation—a review. Int. J. Theor. Phys. 21, 905–940 (1982)
Bertsekas, D.P.: Network Optimization: Continuous and Discrete Models. Athena Scientific, Belmont (1998)
Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)
Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., Sobolevski, A.: Reconstruction of the early Universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346, 501–524 (2003)
Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Clarendon Press, Oxford (2006)
Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)
Chen, L., Sun, F. (eds.): Advances in Finite Time Thermodynamics: Analysis and Optimization. Nova Science Publ., Hauppauge (2004)
Chernyak, V., Chertkov, M., Jarzynski, C.: Path-integral analysis of fluctuation theorems for general Langevin processes. J. Stat. Mech. 08, P08001 (2006)
Chetrite, R., Gawȩdzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)
Dillenschneider, R., Lutz, E.: Memory erasure in small systems. Phys. Rev. Lett. 102, 210601 (2009)
Esposito, M., Van den Broeck, C.: Second law and Landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011)
Esposito, M., Kawai, R., Lindenberg, K., Van den Broeck, C.: Finite-time thermodynamics for a single-level quantum dot. Europhys. Lett. 89, 20003 (2010)
Esposito, M., Kawai, R., Lindenberg, K., Van den Broeck, C.: Efficiency at maximal power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)
Evans, D.J., Searles, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2005)
Gallavotti, G.: Fluctuation Theorem and chaos. Eur. Phys. J. B 64, 315–320 (2008)
Gallavotti, G.: On thermostats: Isokinetic or Hamiltonian? Finite or infinite? Chaos 19, 013101 (2009)
Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177, 113–161 (1996)
Ge, H., Jiang, D.-Q., Qian, M.: Reversibility and entropy production of inhomogeneous Markov chains. J. Appl. Probab. 43, 1028–1043 (2006)
Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, London (1971)
Gomez-Marin, A., Schmiedl, T., Seifert, U.: Optimal protocols for minimal work processes in underdamped stochastic thermodynamics. J. Chem. Phys. 129, 024114 (2008)
Guerra, F., Morato, L.: Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27, 1774–1786 (1983)
Hatano, T., Sasa, S.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463–3466 (2001)
Hongler, M.-O., Soner, H.M., Streit, L.: Stochastic control for a class of random evolution models. Appl. Math. Optim. 49, 113–121 (2004)
Jarzynski, C.: Equilibrium free energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56, 5018–5035 (1997)
Jarzynski, C.: Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Ann. Rev. Condens. Matter Phys. 2, 329–351 (2011)
Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)
Jun, Y., Bechhoefer, J.: Experimental study of memory erasure in a double-well potential, abstract of a talk at APS March Meeting 2011. Bull. Am. Phys. Soc. 56(1) (2011)
Kantorovich, L.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)
Kawai, R., Parrondo, J.M.R., Van den Broeck, C.: Dissipation: The phase-space perspective. Phys. Rev. Lett. 98, 080602 (2007)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5 (3), 183–191 (1961)
Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)
Maes, C.: On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré 2, 29–62 (2003)
Maes, C., Netočný, K., Wynants, B.: Steady state statistics of driven diffusions. Physica A 387, 2675–2689 (2008)
Maes, C., Netočný, K., Wynants, B.: On and beyond entropy production: the case of Markov jump processes. Markov Process. Relat. Fields 14, 445–464 (2008)
Maes, C., Redig, F., Van Moffaert, A.: On definition of entropy production, via examples. J. Math. Phys. 41, 1528–1554 (2000)
Monge, G.: Mémoir sur la thórie des déblais et des remblais. In: Histoire de l’Académie Royale des Sciences, Année 1781, pp. 666–704. Imprimerie Royale, Paris (1784)
Maroney, O.J.E.: Landauer’s erasure principle in non-equilibrium systems. arXiv:1112.0898v1 [cond-mat.stat-mech]
Muratore-Ginanneschi, P., Mejía-Monasterio, C., Peliti, L.: Heat release by controlled continuous-time Markov jump processes. arXiv:1203.4062v1 [cond-mat.stat-mech]
Nelson, E.: Dynamic Theories of Brownian Motion. Princeton University Press, Princeton (1967)
Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007)
Schmiedl, T., Seifert, U.: Efficiency at maximum power: An analytically solvable model for stochastic heat engines. Europhys. Lett. 81, 20003 (2008)
Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48, 571–585 (1976)
Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)
Seifert, U.: Stochastic thermodynamics: Principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)
Sekimoto, K.: Stochastic Energetics. Lecture Notes in Physics, vol. 799. Springer, Berlin (2010)
Szilard, L.: Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen. Z. Phys. 32, 753–788 (1925)
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 38. Am. Math. Soc., Providence (2003)
Zander, C., Plastino, A.R., Plastino, A., Casas, M., Curilef, S.: Landauer’s Principle and divergenceless dynamical systems. Entropy 11, 586–597 (2009)
Acknowledgements
E.A. acknowledges support from the Academy of Finland as part of its Finland Distinguished Professor program, Project No. 129024. K.G. thanks S. Ciliberto, U. Seifert and C. Van den Broeck for inspiring discussions. His work was partly done within the framework of the STOSYMAP project ANR-11-BS01-015-02. R.M.’s work was partly supported by the OTARIE project ANR-07-BLAN-0235. P.M.-G. acknowledges support of the Center of Excellence “Analysis and Dynamics” of the Academy of Finland.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aurell, E., Gawȩdzki, K., Mejía-Monasterio, C. et al. Refined Second Law of Thermodynamics for Fast Random Processes. J Stat Phys 147, 487–505 (2012). https://doi.org/10.1007/s10955-012-0478-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10955-012-0478-x