Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blast Waves in the Zero Temperature Hard Sphere Gas: Double Scaling Structure

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the blast generated by sudden localized release of energy in a cold gas. Specifically, we consider one-dimensional hard-rod gas and two-dimensional hard disc gas. For this problem, the Taylor–von Neumann–Sedov (TvNS) solution of Euler equations has a self-similar form. The shock wave remains infinitely strong for the zero-temperature gas, so the solution applies indefinitely. The TvNS solution ignores dissipation, however. We show that this is erroneous in the core region which, in two dimensions, expands as \(t^{2/5}\) while the shock wave propagates as \(t^{1/2}\). A new self-similar solution depending on the scaling variable \(r/t^{2/5}\) describes the core, while the TvNS solution describes the bulk. We demonstrate this from a numerical solution of the Navier–Stokes (NS) equations and from molecular dynamics simulations for a gas of hard discs in two dimensions and hard rods in one dimension. In both cases, the shock front position predicted by NS equations and by the TvNS solution agrees with that predicted by molecular dynamics simulations. However, the NS equations fail to describe the near-core form of the scaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Course of Theoretical Physics, vol. 10. Butterworth-Heinemann, Oxford (1981)

    Google Scholar 

  2. Ostriker, J.P., McKee, C.F.: Astrophysical blastwaves. Rev. Mod. Phys. 60, 1–68 (1988)

    Article  ADS  Google Scholar 

  3. Goodman, J.: Convective instability of hollow Sedov–Taylor blast waves. Astrophys. J. 358, 214 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gal-Yam, A., Fox, D.B., Price, P.A., Ofek, E.O., Davis, M.R., Leonard, D.C., Soderberg, A.M., Schmidt, B.P., Lewis, K.M., Peterson, B.A., Kulkarni, S.R., Berger, E., Cenko, S.B., Sari, R., Sharon, K., Frail, D., Moon, D.S., Brown, P.J., Cucchiara, A., Harrison, F., Piran, T., Persson, S.E., McCarthy, P.J., Penprase, B.E., Chevalier, R.A., MacFadyen, A.I.: A novel explosive process is required for the \(\gamma \)-ray burst GRB 060614. Nature 444(7122), 1053–1055 (2006)

    Article  ADS  Google Scholar 

  5. Tang, X., Chevalier, R.A.: Shock evolution in non-radiative supernova remnants. Mon. Not. R. Astron. Soc. 465(4), 3793–3802 (2016)

    Article  ADS  Google Scholar 

  6. Burrows, A.: Colloquium: perspectives on core-collapse supernova theory. Rev. Mod. Phys. 85, 245–261 (2013)

    Article  ADS  Google Scholar 

  7. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  8. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, New York (1987)

    Google Scholar 

  9. Taylor, G.I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. A 201(1065), 159–174 (1950)

    ADS  MATH  Google Scholar 

  10. Taylor, G.I.: The formation of a blast wave by a very intense explosion-II the atomic explosion of 1945. Proc. R. Soc. Lond. Ser. A 201(1065), 175–186 (1950)

    Article  ADS  MATH  Google Scholar 

  11. von Neumann, J.: Collected Works. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  12. Sedov, L.I.: Propagation of strong shock waves. J. Appl. Math. Mech. 10, 241–250 (1946)

    Google Scholar 

  13. Bethe, H.A., Fuchs, K., von Neuman, J., Peierls, R., Penney, W.G., Hirschfelder, J.O.: Shock hydrodynamics and blast waves (1944)

  14. von Neumann, J.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press. New York (1966–1967)

  15. Ghoniem, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech. 117, 473–491 (1982)

    Article  ADS  MATH  Google Scholar 

  16. Steiner, H., Gretler, W.: The propagation of spherical and cylindrical shock waves in real gases. Phys. Fluids 6(6), 2154–2164 (1994)

    Article  ADS  MATH  Google Scholar 

  17. VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26(6), 766–775 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Latter, R.: Similarity solution for a spherical shock wave. J. Appl. Phys. 26(8), 954–960 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Myron, N.: Shock waves from line sources numerical solutions and experimental measurements. Phys. Fluids 13(11), 2665–2675 (1970)

    Article  Google Scholar 

  21. Chakraborti, S., Ganapa, S., Krapivsky, P.L., Dhar, A.: Blast in a one-dimensional cold gas: from Newtonian dynamics to hydrodynamics. Phys. Rev. Lett. 126(24), 244503 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ganapa, S., Chakraborti, S., Krapivsky, P.L., Dhar, A.: Blast in the one-dimensional cold gas: comparison of microscopic simulations with hydrodynamic predictions. Phys. Fluids 33, 087113 (2021)

    Article  ADS  Google Scholar 

  23. Chakraborti, S., Dhar, A., Krapivsky, P.: A splash in a one-dimensional cold gas. SciPost Phys. 13(3), 074 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008)

    Article  ADS  Google Scholar 

  26. Kundu, A., Bernardin, C., Saito, K., Kundu, A., Dhar, A.: Fractional equation description of an open anomalous heat conduction set-up. J. Stat. Mech. 2019(1), 013205 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dhar, A., Kundu, A., Kundu, A.: Anomalous heat transport in one dimensional systems: a description using non-local fractional-type diffusion equation. Front. Phys. 7, 159 (2019)

    Article  Google Scholar 

  28. Hurtado, P.I.: Breakdown of hydrodynamics in a simple one-dimensional fluid. Phys. Rev. Lett. 96, 010601 (2006)

    Article  ADS  Google Scholar 

  29. Barbier, M., Villamaina, D., Trizac, E.: Microscopic origin of self-similarity in granular blast waves. Phys. Fluids 28, 083302 (2016)

    Article  ADS  Google Scholar 

  30. Joy, J.P., Rajesh, R.: Shock propagation in the hard sphere gas in two dimensions: comparison between simulations and hydrodynamics. J. Stat. Phys. 184(1), 3 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Joy, J.P., Pathak, S.N., Rajesh, R.: Shock propagation following an intense explosion: comparison between hydrodynamics and simulations. J. Stat. Phys. 182(2), 34 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kumar, A., Rajesh, R.: Blast waves in two and three dimensions: Euler versus Navier–Stokes equations. J. Stat. Phys. 188(2), 12 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kumar, A.: Private communication

  34. Dorfman, J.R., van Beijeren, H., et al.: Contemporary Kinetic Theory of Matter. Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  35. Barrat, A., Trizac, E.: Molecular dynamics simulations of vibrated granular gases. Phys. Rev. E 66, 051303 (2002)

    Article  ADS  Google Scholar 

  36. MacCormack, R.W.: A numerical method for solving the equations of compressible viscous flow. AIAA J. 20(9), 1275–1281 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gass, D.M.: Enskog theory for a rigid disk fluid. J. Chem. Phys. 54(5), 1898–1902 (1971)

    Article  ADS  Google Scholar 

  38. García-Rojo, R., Luding, S., Javier Brey, J.: Transport coefficients for dense hard-disk systems. Phys. Rev. E 74(6), 061305 (2006)

    Article  ADS  Google Scholar 

  39. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer, New York (2010)

    Book  MATH  Google Scholar 

  40. Resibois, P., De Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    MATH  Google Scholar 

  41. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  42. Alder, B.J., Wainwright, T.E.: Decay of the velocity autocorrelation function. Phys. Rev. A 1(1), 18 (1970)

    Article  ADS  Google Scholar 

  43. Lepri, S.: Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer, vol. 921. Springer, New York (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Amit Kumar and R. Rajesh for discussions and for permission to use data from Ref. [30]. S.K.S and A. D. acknowledge support from the Department of Atomic Energy, Government of India, under project no. 19P1112R &D. AD and PLK acknowledge the support of the Erwin Schrodinger Institute where several discussions related to the work were held during the program ‘Large Deviations, Extremes and Anomalous Transport in Non-equilibrium Systems’. The numerical computations were done on ICTS clusters Contra, Tetris and Mario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Roberto Livi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Chakraborti, S., Dhar, A. et al. Blast Waves in the Zero Temperature Hard Sphere Gas: Double Scaling Structure. J Stat Phys 190, 118 (2023). https://doi.org/10.1007/s10955-023-03127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-023-03127-1

Keywords