Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Existence of the Limit Value of Two Person Zero-Sum Discounted Repeated Games via Comparison Theorems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We give new proofs of existence of the limit of the discounted values for two person zero-sum games in the three following frameworks: absorbing, recursive, incomplete information. The idea of these new proofs is to use some comparison criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. USA 39, 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kohlberg, E.: Repeated games with absorbing states. Ann. Stat. 2, 724–738 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rosenberg, D., Sorin, S.: An operator approach to zero-sum repeated games. Isr. J. Math. 121, 221–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Laraki, R.: Explicit formulas for repeated games with absorbing states. Int. J. Game Theory 39, 53–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Everett, H.: Recursive games. Contributions to the theory of games, III. In: Kuhn, H.W., Tucker, A.W. (eds.) Annals of Mathematical Studies, vol. 39, pp. 47–78. Princeton University Press, Princeton (1957)

    Google Scholar 

  6. Sorin, S.: The operator approach to zero-sum stochastic games. In: Neyman, A., Sorin, S. (eds.) Stochastic Games and Applications. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  7. Aumann, R.J., Maschler, M.: Repeated Games with Incomplete Information. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Mertens, J.-F., Zamir, S.: The value of two-person zero-sum repeated games with lack of information on both sides. Int. J. Game Theory 1, 39–64 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laraki, R.: Variational inequalities, system of functional equations, and incomplete information repeated games. SIAM J. Control Optim. 40, 516–524 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vigeral, G.: Propriétés asymptotiques des jeux répétés à somme nulle. Thèse de doctorat, Université Pierre et Marie Curie (2009)

  11. Mertens, J.-F., Sorin, S., Zamir, S.: Repeated games. CORE DP 9420-22 (1994)

Download references

Acknowledgements

The research of the first author was supported by grant ANR-08-BLAN- 0294-01 (France). The research of the second author was supported by grant ANR-10-BLAN 0112 (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Vigeral.

Additional information

Communicated by Irinel Chiril Dragan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorin, S., Vigeral, G. Existence of the Limit Value of Two Person Zero-Sum Discounted Repeated Games via Comparison Theorems. J Optim Theory Appl 157, 564–576 (2013). https://doi.org/10.1007/s10957-012-0193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0193-4

Keywords