Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Estimation in Interception Endgames

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The paper presents an overview of the different errors created in an interception endgame by the measurement noise and the need of using an estimator in the guidance loop. Approaches for reducing the effects of the estimation error are described and some directions for further investigations are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kalman, R.E.: A new approach of linear filtering and prediction problems. J. Basic Eng. 82D, 35–50 (1960)

    Article  Google Scholar 

  2. Zarchan, P.: Representation of realistic evasive maneuvers by the use of shaping filters. J. Guid. Control Dyn. 2, 290–295 (1979)

    Article  MATH  Google Scholar 

  3. Maybeck, P.S.: Stochastic Models, Estimation and Control, vol. 2. Academic Press, New York (1982)

    MATH  Google Scholar 

  4. Magill, D.T.: Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. Autom. Control 10, 434–439 (1965)

    Article  MathSciNet  Google Scholar 

  5. Tam, P., Moore, J.B.: Adaptive estimation using parallel processing techniques. Comput. Electr. Eng. 2, 203–214 (1975)

    Article  MATH  Google Scholar 

  6. Rusnak, I.: Multiple model-based terminal guidance law. J. Guid. Control Dyn. 23, 742–746 (2000)

    Article  Google Scholar 

  7. Shima, T., Oshman, Y., Shinar, J.: Efficient multiple model adaptive estimation in ballistic missile interception scenarios. J. Guid. Control Dyn. 25, 667–675 (2002)

    Article  Google Scholar 

  8. Rotstein, H., Szneier, M.: An exact solution to the general 4-blocks discrete-time mixed H2/H problems via convex optimization. IEEE Trans. Autom. Control 43, 1475–1480 (1998)

    Article  MATH  Google Scholar 

  9. Lai, T.L., Shan, Z.: Efficient recursive algorithms for detection of abrupt signal and systems. IEEE Trans. Autom. Control 44, 952–966 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joseph, P.D., Tau, J.T.: On linear control theory. Trans. Am. Inst. Electr. Eng., 3 80, 193–196 (1961)

    Google Scholar 

  11. Tse, E., Bar Shalom, Y.: Generalized certainty equivalence and dual effect in stochastic control. IEEE Trans. Autom. Control 20, 817–819 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wonham, W.M.: On the separation theorem of stochastic control. SIAM J. Control 6, 312–326 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  13. Witsenhausen, H.S.: Separation of estimation and control for discrete time systems. Proc. IEEE 59, 1557–1566 (1971)

    Article  MathSciNet  Google Scholar 

  14. Shaviv, I.G., Oshman, Y.: Estimation-guided guidance. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Keystone, CO, August 2006. Paper No. AIAA-2006-6217

    Google Scholar 

  15. Hexner, G., Shima, T.: Stochastic optimal control guidance law with bounded acceleration. IEEE Trans. Aerosp. Electron. Syst. 43, 71–78 (2007)

    Article  Google Scholar 

  16. Shinar, J., Turetsky, V.: What happens when certainty equivalence is not valid?—Is there an optimal estimator for terminal guidance? Annu. Rev. Control 27, 119–130 (2003)

    Article  Google Scholar 

  17. Shinar, J.: Solution techniques for realistic pursuit-evasion games. In: Leondes, C.T. (ed.) Advances in Control and Dynamic Systems, vol. 17, pp. 63–124. Academic Press, New York (1981)

    Google Scholar 

  18. Singer, R.A.: Estimating optimal filter tracking performance for manned maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 6, 473–483 (1970)

    Article  Google Scholar 

  19. Shinar, J., Glizer, V.Y.: Solution of a delayed information linear pursuit-evasion game with bounded controls. Int. Game Theory Rev. 1, 197–218 (2000)

    Article  MathSciNet  Google Scholar 

  20. Shinar, J., Shima, T.: Non-orthodox guidance law development approach for the interception of maneuvering anti-surface missiles. J. Guid. Control Dyn. 25, 658–666 (2002)

    Article  Google Scholar 

  21. Petrosjan, L.A.: Differential Games of Pursuit. Series on Optimization, vol. 2. World Scientific, Singapore (1993)

    Book  Google Scholar 

  22. Shinar, J., Glizer, V.Y.: New approach to improve the accuracy in delayed information pursuit-evasion games. In: Haurie, A., Muto, S., Petrosyan, L.A., Raghavan, T.E.S. (eds.) Annals of Dynamic Games, vol. 8, pp. 65–105. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  23. Shinar, J., Glizer, V.Y.: A linear pursuit-evasion game with time varying information delay. TAE Report No. 889, Technion, Haifa (2002)

  24. Glizer, V.Y., Turetsky, V.: A linear differential game with bounded controls and two information delays. Optim. Control Appl. Methods 30, 135–161 (2009)

    Article  MathSciNet  Google Scholar 

  25. Shinar, J., Turetsky, V., Oshman, Y.: Integrated estimation/guidance design approach for improved homing against randomly maneuvering targets. J. Guid. Control Dyn. 30, 154–160 (2007)

    Article  Google Scholar 

  26. Shinar, J., Turetsky, V.: Three-dimensional validation of an integrated estimation/guidance algorithm against randomly maneuvering targets. J. Guid. Control Dyn. 32, 1034–1039 (2009)

    Article  Google Scholar 

  27. Shinar, J., Ben Asher, J.Z.: Interception of naturally maneuvering reentry vehicles. In: Proceedings of the 4th AAAF International Conference on Missile Defense “Challenges in Europe”, Heraklion, Crete, Greece, 26–29 June 2007

    Google Scholar 

  28. Gutman, S.: On optimal guidance for homing missiles. J. Guid. Control Dyn. 3, 296–300 (1979)

    Article  Google Scholar 

  29. Shima, T., Shinar, J.: Time varying linear pursuit-evasion game models with bounded controls. J. Guid. Control Dyn. 25, 425–432 (2002)

    Article  Google Scholar 

  30. Glizer, V.Y., Turetsky, V., Shinar, J.: Terminal cost distribution in discrete-time controlled system with disturbance and noise-corrupted state information. IAENG, Int. J. Appl. Math. 42, 52–59 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Shinar.

Appendix. Partial Differential Equation for the Cumulative Distribution Function of the Terminal State

Appendix. Partial Differential Equation for the Cumulative Distribution Function of the Terminal State

Let z(t) be the state of the scalar continuous-time system

$$ \dot{z} = h_{1}(t)u, $$
(1)

where the control u is given by a saturated linear strategy

$$ u(t,z) = \mathrm{sat}\bigl(K(t)z\bigr) = \begin{cases} 1, & K(t)z > 1, \\ K(t)z, & |K(t)z| \le1, \\ - 1, & K(t)z < - 1, \end{cases} $$
(2)

and since the state z(t) is not known accurately, the actual control is

$$ u = \mathrm{sat}\bigl[K(t) \bigl(z(t) + \eta(t)\bigr)\bigr], $$
(3)

where η(t) is a random estimation error. Let f z (x,t) denote the probability density function of z(t). In [29], this probability density function was approximated by \(\hat{f}_{z(t_{n + 1})}(x)\), where z(t n+1)=z n+1 is the state of the discrete-time system

$$ z_{n + 1} = z_{n} + b_{n}u_{n}, $$
(4)

t 0=0, t n =t 0+nΔt, n=1,…,N, u n =sat(k n (z n +η n )), b n th 1(t n ), k n =K(t n ), η n =η(t n ).

The approximation yields [30], for n=0,1,…,N−1,

(5)

where \(A_{n} = 1 + \frac{1}{b_{n}k_{n}}\), \(B_{n}(x) = \frac{x}{b_{n}k_{n}}\), and the probability density function \(\hat{f}_{z(0)}(x) = f_{z_{0}}(x)\). It is assumed that the initial value of z and the probability density functions \(f_{\eta (t_{n})}(x)\) of the estimation errors are known.

By the change of variables y=−A n s+B n (x), (5) can be rewritten for t n =t, t n+1=tt as

(6)

where α(t,xt)=−x−1/K(t)−Δth 1(t), β(t,xt)=−x+1/K(t)+Δth 1(t), γ(tt)≜Δth 1(t)K(t)+1, δ 1(t,xt,y)≜x−Δth 1(t)K(t)y. By taking the limit as Δt→0 one obtains that \(\lim_{\Delta t \to 0}g(x,t,\Delta t) = \hat{f}_{z(t)}(x)\), yielding \(\lim_{\Delta t \to 0}[ \hat{f}_{z(t + \Delta t)}x - \hat{f}_{z(t)}(x) ] = 0\). By applying the l’Hôpital’s rule,

$$ \lim_{\Delta t \to 0}\frac{\hat{f}_{z(t + \Delta t)}(x) - \hat{f}_{z(t)}(x)}{\Delta t} = \lim_{\Delta t \to 0}\frac{\partial g(x,t,\Delta t)}{\partial\Delta t}. $$
(7)

By differentiating g(t,xt) w.r.t. Δt,

$$ \lim_{\Delta t \to 0}\frac{\partial g(x,t,\Delta t)}{\partial\Delta t} = a(x,t) \frac{\partial \hat{f}_{z(t)}(x)}{\partial x} + b(x,t)\hat{f}_{z(t)}(x), $$
(8)

where

Note that for Δt→0, the set of collocation points t n fills the entire interval [0,t f ]. Thus, based on the results of [30], the discrete probability density function \(\hat{f}_{z(t)}(x)\) becomes a continuous probability density function f z (x,t). In such a case, it is reasonable to set

$$ \lim_{\Delta t \to 0}\frac{\hat{f}_{z(t + \Delta t)}(x) - \hat{f}_{z(t)}(x)}{\Delta t} = \frac{\partial f_{z}(x,t)}{\partial t}. $$
(9)

Thus, due to (7)–(9),

$$ \frac{\partial f_{z}(x,t)}{\partial t} = a(x,t)\frac{\partial f_{z}(x,t)}{\partial x} + b(x,t)f_{z}(x,t), $$
(10)

which is the linear first-order partial differential equation for f z (x,t). This equation is subject to the initial condition \(f_{z}(x,0) = f_{z_{0}}(x)\). By some algebra, the coefficient a(x,t) is simplified as

$$ a(x,t) = h_{1}(t) \biggl( K(t)\int_{ - x - 1/K(t)}^{ - x + 1/K(t)} F_{\eta (t)}(y)\,dy - 1 \biggr). $$
(11)

By direct differentiation, \(\frac{\partial a(x,t)}{\partial x} = b(x,t)\), i.e. Eq. (10) can be rewritten as

$$ \frac{\partial f_{z}(x,t)}{\partial t} = \frac{\partial}{\partial x} \bigl[ a(x,t)f_{z}(x,t) \bigr]. $$
(12)

By integrating (12) w.r.t. x from −∞ to x, one obtains

$$ \int_{ - \infty }^{x} \frac{\partial f_{z}(\xi,t)}{\partial t}\,d \xi= \frac{\partial}{\partial t}\int_{ - \infty }^{x} f_{z}(\xi,t)\,d\xi= \bigl[a(\xi,t)f_{z}(\xi,t) \bigr]\big|_{\xi = - \infty }^{\xi = x} = a(x,t)f_{z}(x,t), $$
(13)

or alternatively

$$ \frac{\partial F_{z}(x,t)}{\partial t} = a(x,t)\frac{\partial F_{z}(x,t)}{\partial x}, $$
(14)

where \(F_{z}(x,t) = \int_{ - \infty }^{x} f_{z}(\xi,t)\,d\xi\) is the cumulative distribution function of z(t), which satisfies the linear first-order transition-type PDE (14), subject to the initial condition \(F_{z}(x,0) = \int_{ - \infty }^{x} f_{z_{0}}(\xi) \,d\xi\).

By solving the PDE (14) the cumulative distribution function of z(t f ) can be computed based on the probability density functions \(f_{\eta (t_{n})}(x)\) of the estimation errors during the interval [0,t f [.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinar, J., Turetsky, V. & Glizer, V.Y. On Estimation in Interception Endgames. J Optim Theory Appl 157, 593–611 (2013). https://doi.org/10.1007/s10957-012-0241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0241-0

Keywords