Abstract
We study the viscosity solutions of integro-differential Hamilton–Jacobi–Bellman equations of degenerate parabolic type. These equations are from the pricing problem for the European passport options in a jump-diffusion model. The passport option is a call option on a trading account. We discuss the mathematical model for pricing problem. We prove the comparison principle, uniqueness and convexity preserving for the viscosity solutions of related pricing equations.
Similar content being viewed by others
References
Hyer, T., Lipton-Lifschitz, A., Pugachevsky, D.: Passport to success. Risk 10(9), 127–131 (1997)
Andersen, L., Andreasen, J., Brotherton-Ratcliffe, R.: The passport option. J. Comput. Finance 1(3), 15–36 (1998)
Ahn, H., Penaud, A., Wilmott, P.: Various passport options and their valuation. Appl. Math. Finance 6(4), 275–292 (1998)
Penaud, A., Wilmott, P., Ahn, H.: Exotic passport options. Asia-Pac. Financ. Mark. 6(2), 171–182 (1999)
Nagayama, I.: Pricing of passport option. J. Math. Sci. Univ. Tokyo 5(4), 747–785 (1998)
Henderson, V., Hobson, D.: Local time, coupling and the passport option. Finance Stoch. 4(1), 69–80 (2000)
Shreve, S.E., Vecer, J.: Options on a traded account: vacation calls vacation puts and passport options. Finance Stoch. 4(3), 255–274 (2000)
Chan, S.-S.: The valuation of American passport options. Working Paper, University of Wisconsin-Madison (1999)
Hendersen, V., Hobson, D.: Passport options with stochastic volatility. Appl. Math. Finance 8(2), 97–119 (2001)
Henderson, V., Hobson, D., Kentwell, G.: A new class of commodity hedging strategies: a passport options approach. Int. J. Theor. Appl. Finance 5(3), 255–278 (2002)
Vecer, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4(4), 105–113 (2001)
Ahn, H., Dewynne, J., Hua, P., Penaud, A., Wilmott, P.: The end-of-the-year bonus: how to optimally reward a trader. Int. J. Theor. Appl. Finance 5(2), 279–306 (2002)
Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3(2), 145–166 (1976)
Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1), 125–144 (1976)
Aase, K.K.: Contingent claims valuation when the security price is a combination of an Itô process and a random point process. Stoch. Process. Appl. 28(2), 185–220 (1988)
Naik, V., Lee, M.: General equilibrium pricing of options on the market portfolio with discontinuous returns. Rev. Financ. Stud. 3(4), 493–521 (1990)
Yang, C., Jiang, L., Bian, B.: Free boundary and American options in a jump-diffusion model. Euro. Jnl of Applied Mathematics. 17(1), 95–127 (2006)
Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)
Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)
Soner, H.M.: Controlled Markov processes, viscosity solutions and applications to mathematical finance. In: Capuzzo Dolcetta, I.C., Lions, P.L. (eds.) Viscosity Solutions and Applications, vol. 1660, pp. 134–185. Springer, Berlin (1997)
Soner, H.M.: Stochastic optimal control in finance. Working paper, Princeton University (2004)
Roßberg, T.: A survey: stochastic control of jump-diffusion-processes. Working paper (2000)
Alvarez, O., Lasry, J.-M., Lions, P.-L.: Convexity viscosity solutions and state constraints. J. Math. Pures Appl. 76(3), 265–288 (1997)
Feldman, M., McCuan, J.: Constructing convex solutions via Perron’s method. Ann. Univ. Ferrara 53(1), 65–94 (2007)
Giga, Y., Goto, S., Ishii, H., Sato, M.H.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J. 40(2), 443–470 (1991)
Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8, 1–27 (1998)
Benth, F.E., Karlsen, H.K., Reikvam, K.: A semilinear Black and Scholes partial differential equation for valuing American options. Finance Stoch. 7(3), 277–298 (2003)
Topper, J.: A finite element implementation of passport options. Master’s Thesis, University of Oxford (2003)
Hung, P.Y.: The methods of Monte Carlo and finite difference apply to the passport options. Master’s Thesis, Providence University (2004)
Pooley, D.: Numerical methods for nonlinear equations in option pricing. PhD Thesis, University of Waterloo (2003)
Acknowledgements
This work was supported in part by the Research Program of Shanghai Normal University (No. SK201211), the Major Project of Shanghai Municipal Education Commission (No. 13ZZ107) and Shanghai Normal University Leading Academic Discipline Project (No. DZW912). The authors would like to thank the reviewers for their very helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Y., Bian, B. & Zhang, J. Viscosity Solutions of Integro-Differential Equations and Passport Options in a Jump-Diffusion Model. J Optim Theory Appl 161, 122–144 (2014). https://doi.org/10.1007/s10957-013-0382-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-013-0382-9