Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Quadratically constrained quadratic programming arises from a broad range of applications and is known to be among the hardest optimization problems. In recent years, semidefinite relaxation has become a popular approach for quadratically constrained quadratic programming, and many results have been reported in the literature. In this paper, we first discuss how to assess the gap between quadratically constrained quadratic programming and its semidefinite relaxation. Based on the estimated gap, we discuss how to construct an exact penalty function for quadratically constrained quadratic programming based on its semidefinite relaxation. We then introduce a special penalty method for quadratically constrained linear programming based on its semidefinite relaxation, resulting in the so-called conditionally quasi-convex relaxation. We show that the conditionally quasi-convex relaxation can provide tighter bounds than the standard semidefinite relaxation. By exploring various properties of the conditionally quasi-convex relaxation model, we develop two effective procedures, an iterative procedure and a bisection procedure, to solve the constructed conditionally quasi-convex relaxation. Promising numerical results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We remark that one can convert a generic QCQP to QCLP easily by augmenting the underlying QCQP slightly.

  2. Here we assume that the upper bound \(u_1\) is known in advance. For QP with linear and convex quadratic constraints, \(u_1\) can be estimated via solving its SDR (2). For generic QCQPs with bounded constraint set, we can assume the existence of such an upper bound.

References

  1. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 217–270. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  3. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kim, S., Kojima, M.: Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 26, 143–154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, S.: Quadratic maximization and semidefinite relaxation. Math. Program. 87, 453–465 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22, 27–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buchheim, C., De Santis, M., Lucidi, S., Rinaldi, F., Trieu, L.: A feasible active set method with reoptimization for convex quadratic mixed-integer programming. SIAM J. Optim. 26(3), 1695–1714 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  12. Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Program. 102, 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook on Semidefinite Programming. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  14. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 141–160 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ye, Y.: Approximating global quadratic optimization with convex quadratic constraints. J. Glob. Optim. 15, 1–17 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nemirovski, A., Roos, C., Terlaky, T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86, 463–473 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khot, S.: Ruling out PTAS for graph min-bisection, dense \(k\)-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Poljak, S., Wolkowicz, H.: Convex relaxations of (0,1)-quadratic programming. Math. Oper. Res. 20, 550–561 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saxena, A., Bonami, P., Lee, J.: Convex relaxation of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program.(Ser. B) 124, 383–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saxena, A., Bonami, P., Lee, J.: Convex relaxation of nonconvex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zheng, X.J., Sun, X.L., Li, D.: Convex relaxations for nonconvex quadratically constrained quadratic programming: matrix cone decomposition and polyhedral approximation. Math. Program. (Ser. B) 129, 301–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, X.J., Sun, X.L., Li, D.: Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations. J. Glob. Optim. 50, 695–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quist, A.J., de Klerk, E., Roos, C., Terlaky, T.: Copositive relaxation for general quadratic programming. Optim. Methods Softw. 9, 185–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of lowdimensional quadratic forms. Math. Program. (Ser. B) 124, 33–43 (2010)

    Article  MATH  Google Scholar 

  29. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kojima, M., Tuncel, L.: Cones of matrices and successive convex relaxations of nonconvex sets. SIAM J. Optim. 10(3), 750–778 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Malik, U., Jaimoukha, I.M., Halikias, G.D., Gungah, S.K.: On the gap between the quadratic integer programming problem and its semidefinite relaxation. Math. Program. 107, 505–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xia, Y., Sun, X.L., Li, D., Zheng, X.J.: On the reduction of duality gap in box constrained nonconvex quadratic program. SIAM J. Optim. 21(3), 706–729 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, J., Zhu, T.: A nonlinear semidefinite optimization relaxation for the worst-case linear optimization under uncertainties. Math. Program. 152(1), 593–614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Aubin, J.P., Frankowska, H.: Set-valued Analysis. Birkhäuser, Boston (2009)

    Book  MATH  Google Scholar 

  35. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  36. IBM ILOG CPLEX. IBM ILOG CPLEX 12.3 User’s Manual for CPLEX, 89 (2011)

  37. Grant, M., Boyd, S., Ye, Y.: CVX: Matlab software for disciplined convex programming. Avialable at http://www.stanford.edu/boyd/cvx

  38. Toh, K., Todd, M., Tutuncu, R.: SDPT3: Matlab software package for semidefinite programming. Optim. Methods Softw. 11(12), 545–581 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bretthauer, K.M., Shetty, B.: The nonlinear knapsack problem-algorithms and applications. Eur. J. Oper. Res. 138(3), 459–472 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rhys, J.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17(3), 200–207 (1970)

    Article  MATH  Google Scholar 

  41. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math. 18(2), 219–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pisinger, D.: The quadratic knapsack problem survey. Discrete Appl. Math. 155(5), 623–648 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and the two anonymous referees for the detailed comments and valuable suggestions, which have improved the final presentation of the paper. The research of the first author is supported by NSFC grants 11371324 and 11871433, and Zhejiang Provincial NSFC grants LY17A010023 and LY18A010011. The research of the second author is supported by NSFC Grants 11371103 and 11701511. The research of the last author is supported by NSF grants CMMI-1131690, CMMI-1537712 and CNS-1637347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiming Peng.

Additional information

Gianni Di Pillo.

Xiaodi Bai: Co-first author.

Appendix: Approach for Generating Disjunctive Cuts

Appendix: Approach for Generating Disjunctive Cuts

In this appendix, we describe the approach for generating disjunctive cuts (28), which can be also found in Sections 2 and 3 of [21].

Let us define the linear operator V from \({\mathop {\mathrm{I}\mathrm{R}}\nolimits }^n\) to \({{\mathcal {S}}}^m\) by \(Vx=\sum _{i=1}^nx_iV_i\), where \(V_i\in {{\mathcal {S}}}^m\), \(i=1,\ldots ,n\), we have for the adjoint operator \(V^*\) the formula

$$\begin{aligned} V^*Z=\left( \mathrm{Tr}\displaystyle {\left(V_1Z\right)},\ldots , \mathrm{Tr}\displaystyle {\left(V_nZ\right)} \right) ^T,~~\forall Z\in {{\mathcal {S}}}^m. \end{aligned}$$

Given a polytope \(P := \left\{ (x,X) \in {\mathop {\mathrm{I}\mathrm{R}}\nolimits }^n\times {{\mathcal {S}}}^n \mid Bx+ V^*X\ge b\right\} \), a point \(({\hat{x}},{\hat{X}}) \in P\) and a disjunction \(D: = \bigvee ^q_{k=1} (D_kx+ W_k^*X\ge d_k)\), the central issue in disjunctive programming is to demonstrate that \(({\hat{x}},{\hat{X}}) \in Q\) or to find a valid inequality \(\alpha ^T x +\mathrm{Tr}\displaystyle {\left(U X\right)}\ge \beta \) for Q that is violated by \(({\hat{x}},{\hat{X}})\), where \(Q: = \mathrm{clconv} \bigcup ^q_{k=1}\left\{ (x,X) \in P \mid D_k x + W_k^*X\ge d_k \right\} \).

The following theorem is a direct generalization of Theorem 1 in [21].

Theorem A.1

  \(({\hat{x}},{\hat{X}}) \in Q\) if and only if the optimal value of the following Cut Generation Linear Program (CGLP) is nonnegative.

$$\begin{aligned}&\min \, \alpha ^T {\hat{x}} +\mathrm{Tr}\displaystyle {\left(U\hat{X}\right)}- \beta \\&\mathrm{s.~t. }\,\, B^Tu^k+D_k^Tv^k=\alpha ,~k=1,\ldots ,q,\\&\quad Vu^k+ W_kv^k=U,~k=1,\ldots ,q,\\&\quad b^Tu^k+d_k^Tv^k\ge \beta ,~k=1,\ldots ,q,\\&\quad u^k,v^k\ge 0,~k=1,\ldots ,q,\\&\quad \sum _{k=1}^q\left( \xi ^Tu^k+\xi _k^Tv^k\right) =1, \end{aligned}$$

where \(\xi \) and \(\xi _k\)\((k = 1,\ldots , q)\) are any nonnegative vectors of conformable dimensions that satisfy \(\xi _k > 0\)\((k = 1, \ldots , q)\). If the optimal value of (CGLP) is negative, and \((\alpha , U,\beta , u_1, v_1, \ldots , u_q, v_q)\) is an optimal solution of (CGLP), then \(\alpha ^T x +\mathrm{Tr}\displaystyle {\left(UX\right)}\ge \beta \) is a valid inequality for Q which cuts off \(({\hat{x}},{\hat{X}})\).

In our computational results, the parameters \(\xi \) and \(\xi _k(k = 1,\ldots , q)\) in CGLP are generated in the same fashion as in [21].

Now, we describe the approach for generating disjunctive cuts in [21]. We denote by \((\hat{x}, \hat{X})\) the solution to relaxation (SDR+RLT) which we want to cut off. Let \(\lambda _1 \ge \ldots \ge \lambda _q>0=\lambda _{q+1}\ldots = \lambda _n\) be eigenvalues of the matrix \({\hat{Z}}=\hat{X}-\hat{x}\hat{x}^T\), and let \(p_1, \ldots , p_n\) be a corresponding set of orthonormal eigenvectors. Let \(k\in \{1,\ldots ,q\}\), define

$$\begin{aligned} \eta _l^k=\min _{(x,X)\in {{\mathcal {F}}}}p^T_kx,\quad \eta _u^k=\max _{(x,X)\in {{\mathcal {F}}}}p^T_kx. \end{aligned}$$

Choose \(\theta _k=p^T_k\hat{x}\). As pointed out in [21], the following disjunction can be derived by splitting the range \([\eta _l^k, \eta _u^k]\) of the function \(p^T_ky\) over \({{\mathcal {F}}}\) into two intervals \([\eta _l^k, \theta _k]\) and \([\theta _k, \eta _u^k]\) and constructing a secant approximation of the function \(-(p^T_ky)^2\) in each of the intervals, respectively.

$$\begin{aligned} \left[ \begin{array}{c}\eta _l^k\le p^T_kx\le \theta _k\\ \mathrm{Tr}\displaystyle {\left(p_kp_k^TX\right)}-(\eta _l^k+\theta _k)p^T_kx+\theta _k\eta _l^k\le 0\end{array}\right] \bigvee \left[ \begin{array}{c}\theta _k\le p^T_kx\le \eta _u^k \\ \mathrm{Tr}\displaystyle {\left(p_kp_k^TX\right)}-(\eta _u^k+\theta _k)p^T_kx+\theta _k\eta _u^k\le 0\end{array}\right] . \end{aligned}$$

The above disjunction can be used to derive the following disjunctive cuts by using the apparatus of CGLP:

$$\begin{aligned} \alpha _k^T x +\mathrm{Tr}\displaystyle {\left(U_kX\right)}\ge \beta _k,~~k=1,\ldots ,q. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Bai, X. & Peng, J. Enhancing Semidefinite Relaxation for Quadratically Constrained Quadratic Programming via Penalty Methods. J Optim Theory Appl 180, 964–992 (2019). https://doi.org/10.1007/s10957-018-1416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1416-0

Keywords

Mathematics Subject Classification