Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Whitney’s Theorem, Triangular Sets, and Probabilistic Descent on Manifolds

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We examine doing probabilistic descent over manifolds implicitly defined by a set of polynomials with rational coefficients. The system of polynomials is assumed to be triangularized. An application of Whitney’s embedding theorem allows us to work in a reduced-dimensional embedding space. A numerical continuation method applied to the reduced-dimensional embedded manifold is used to drive the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics. Springer, New York (1997)

    Google Scholar 

  3. Chen, C., Davenport, J.H., Moreno Maza, M., Xia, B., Xiao, R.: Computing with semi-algebraic sets represented by triangular decomposition. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pp. 75–82 (2011)

  4. Chen, C., Davenport, J.H., May, J.P., Maza, M.M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comput. 49, 3–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubry, P., Maza, M.M.: Triangular sets for solving polynomial systems: a comparative implementation of four methods. J. Symb. Comput. 28(1), 125–154 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Maza, M.M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb. Comput. 28(1), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 4th edn. Undergraduate Texts in Mathematics. Springer, New York (2015)

  9. Allgower, E.L., Schmidt, P.H.: An algorithm for piecewise-linear approximation of an implicitly defined manifold. SIAM J. Numer. Anal. 22(2), 322–346 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Allgower, E.L., Georg, K.: Piecewise linear methods for nonlinear equations and optimization. J. Comput. Appl. Math. 124(1), 245–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rheinboldt, W.C.: Numerical continuation methods: a perspective. J. Comput. Appl. Math. 124(1), 229–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dreisigmeyer, D.W.: Equality constraints, Riemannian manifolds and direct search methods (2006). http://www.optimization-online.org/DB_HTML/2007/08/1743.html

  13. Brodzik, M.: The computation of simplicial approximations of implicitly defined p-dimensional manifolds. Comput. Math. Appl. 36(6), 93–113 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic descent. SIAM J. Optim. 25(3), 1515–1541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Audet, C., Dennis Jr., J .E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Dreisigmeyer.

Additional information

Communicated by Horst Martini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: Any opinions and conclusions expressed herein are those of the author and do not necessarily represent the views of the U.S. Census Bureau. The research in this paper does not use any confidential Census Bureau information. This was authored by an employee of the US National Government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreisigmeyer, D.W. Whitney’s Theorem, Triangular Sets, and Probabilistic Descent on Manifolds. J Optim Theory Appl 182, 935–946 (2019). https://doi.org/10.1007/s10957-019-01508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01508-9

Keywords

Mathematics Subject Classification