Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Portfolio Optimization for Assets with Stochastic Yields and Stochastic Volatility

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic portfolio optimization model for investment on a risky asset with stochastic yields and stochastic volatility. The problem is formulated as a stochastic control problem, and the goal is to choose the optimal investment and consumption controls to maximize the investor’s expected total discounted utility. The Hamilton–Jacobi–Bellman equation is derived by virtue of the dynamic programming principle, which is a second-order nonlinear equation. Using the subsolution–supersolution method, we establish the existence result of the classical solution of the equation. Finally, we verify that the solution is equal to the value function and derive and verify the optimal investment and consumption controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51(3), 247–257 (1969)

    Article  Google Scholar 

  2. Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Lorig, M., Sircar, R.: Portfolio optimization under local-stochastic volatility: coefficient Taylor series approximations and implied sharpe ratio. SIAM. J. Financ. Math. 7, 418–447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fatone, L., Mariani, F., Recchioni, M.C., Zirilli, F.: Calibration of a multi-scale stochastic volatility model using European option prices. Math. Methods Econ. Finance 3(1), 49–61 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Fatone, L., Mariani, F., Recchioni, M.C., Zirilli, F.: An explicitly solvable multi-scale stochastic volatility model: option pricing and calibration problems. J. Futures Mark 29(9), 862–893 (2009)

    Article  Google Scholar 

  6. Zariphopoulou, T.: A solution approach to valuation with un-hedgeable risks. Finance Stoch. 5(1), 61–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fleming, W.H., Hernández-Hernández, D.: An optimal consumption model with stochastic volatility. Finance Stoch. 7, 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fouque, J.-P., Han, C.-H.: Pricing Asian options with stochastic volatility. Quant. Finance 3(5), 352–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fouque, J.-P., Sircar, R., Zariphopoulou, T.: Portfolio optimization and stochastic volatility asymptotics. Math. Finance 27(3), 704–745 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fleming, W.H., Pang, T.: An application of stochastic control theory to financial economics. SIAM J. Control Optim. 43(2), 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pang, T.: Portfolio optimization models on infinite time horizon. J. Optim. Theory Appl. 122(3), 573–597 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pang, T.: Stochastic portfolio optimization with log utility. Int. J. Theor. Appl. Finance 9(6), 869–887 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goel, M., Kumar, K.S.: Risk-sensitive portfolio optimization problems with fixed income securities. J. Optim. Theory Appl. 142(1), 67–84 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleming, W.H., Hernández-Hernández, D.: The tradeoff between consumption and investment in incomplete financial markets. Appl. Math. Optim. 52(2), 219–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nagai, H.: H–J–B equations of optimal consumption-investment and verification theorems. Appl. Math. Optim. 71(2), 279–311 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Noh, E.J., Kim, J.H.: An optimal portfolio model with stochastic volatility and stochastic interest rate. J. Math. Anal. Appl. 375(2), 510–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hata, H., Sheu, S.J.: On the Hamilton–Jacobi–Bellman equation for an optimal consumption problem: I. Existence of solution. SIAM J. Control Optim 50(4), 2373–2400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hata, H., Sheu, S.J.: On the Hamilton–Jacobi–Bellman equation for an optimal consumption problem: II. Verification theorem. SIAM J. Control Optim. 50(4), 2401–2430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaise, H., Sheu, S.J.: On the structure of solutions of ergodic type Bellman equation related to risk-sensitive control. Ann. Probab. 34(1), 284–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tunaru, R.: Dividend derivatives. Quant. Finance 18(1), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  21. Geske, R.: The pricing of options with stochastic dividend yield. J. Finance 33(2), 617–625 (1978)

    Article  Google Scholar 

  22. Lioui, A.: Black–Scholes–Merton revisited under stochastic dividend yields. J. Futures Mark. 26(7), 703732 (2006)

    Article  Google Scholar 

  23. Pang, T., Varga, K.: Optimal investment and consumption for a portfolio with stochastic dividends. J. Res. Finance Manag. 1(2), 1–22 (2015)

    Google Scholar 

  24. Chevalier, E., Vath, V.L., Scotti, S.: An optimal dividend and investment control problem under debt constraints. SIAM J. Financ. Math. 4, 297–326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fleming, W.H., Pang, T.: A stochastic control model of investment, production and consumption. Q. Appl. Math. 63, 71–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, Berlin (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Pang.

Additional information

Communicated by Francesco Zirilli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A: Proof of Lemma 2.1

Proof

First consider \(\rho \in [0,1]\). It is easy to get that \(q(y,z)> \sigma _2^2(z) \ge \tilde{\sigma }_2^2>q_0> 0\). Now consider \(\rho _0 \le \rho <0 \). The minimum of q with respect to y is given by the function \(\sigma _2^2(z)(1-\rho ^2)\). So we have

$$\begin{aligned} q(y,z) \ge \sigma _2^2(z)(1-\rho ^2) \ge \tilde{\sigma }_2^2(1-\rho _0^2) =q_0> 0. \end{aligned}$$

So (24) holds for all \(\rho \in [\rho _0,1]. \)\(\square \)

Appendix B: Proof of Lemma 2.2

Proof

To prove this, we consider two cases. First, let \(0 \le \rho \le 1\). Then, by virtue of (26) and (15), we can get

$$\begin{aligned} \varPsi (y,z)= & {} \displaystyle \frac{(be^{-y} + \mu - r)^2}{2(1-\gamma )(\sigma _1^2e^{-2y} + 2\rho \sigma _1\sigma _2(z) e^{-y} + \sigma _2^2(z))}\\\le & {} \displaystyle \frac{(be^{-y}+\mu - r)^2}{2(1-\gamma )(\sigma _1^2e^{-2y} + \tilde{\sigma }_2^2)} \le \displaystyle \frac{2b^2e^{-2y} + 2(\mu - r)^2}{2(1-\gamma )(\sigma _1^2e^{-2y} + \tilde{\sigma }_2^2)} \\= & {} \frac{b^2}{\sigma _1^2(1-\gamma )} + \frac{(\mu - r)^2 - \frac{b^2\tilde{\sigma }_2^2}{\sigma _1^2}}{(1-\gamma )(\sigma _1^2e^{-2y} + \tilde{\sigma }_2^2)}. \end{aligned}$$

If \((\mu - r)^2 - \frac{b^2\tilde{\sigma }_2^2}{\sigma _1^2} \le 0\), then, we have \(\varPsi (y,z) \le \frac{b^2}{\sigma _1^2(1-\gamma )}\). Otherwise, we have

$$\begin{aligned} \varPsi (y,z) \le \frac{b^2}{\sigma _1^2(1-\gamma )} + \frac{(\mu - r)^2 - \frac{b^2\tilde{\sigma }_2^2}{\sigma _1^2}}{(1-\gamma )\tilde{\sigma }_2^2}= \frac{(\mu - r)^2}{\tilde{\sigma }_2^2(1-\gamma )}. \end{aligned}$$

Thus, if \(0\le \rho \le 1\), we have

$$\begin{aligned} \varPsi (y,z) \le \max \left\{ \frac{b^2}{\sigma _1^2(1-\gamma )}, \frac{(\mu - r)^2}{\tilde{\sigma }_2^2(1-\gamma )} \right\} \equiv {\tilde{\varPsi }}. \end{aligned}$$

We can get a similar bound if \(\rho \) is negative. If \(\rho _0 \le \rho < 0,\) then \(\rho (\sigma _1 e^{-y} - \sigma _2(z))^2 \le 0\) implies

$$\begin{aligned} 2\rho \sigma _1\sigma _2(z) e^{-y} \ge \rho \sigma _1^2 e^{-2y} + \rho \sigma _2^2(z), \end{aligned}$$

and so we can get

$$\begin{aligned} \varPsi (y,z)= & {} \displaystyle \frac{(be^{-y} + \mu - r)^2}{2(1-\gamma )(\sigma _1^2e^{-2y} + 2\rho \sigma _1\sigma _2(z) e^{-y} + {\tilde{\sigma }}_1^2(z))}\\\le & {} \displaystyle \frac{(be^{-y}+\mu - r)^2}{2(1-\gamma )(\sigma _1^2e^{-2y} +\rho \sigma _1^2e^{-2y} + \rho \sigma _2^2(z) + \sigma _2^2(z))}\\= & {} \frac{(be^{-y}+\mu - r)^2}{2(1-\gamma )(1+\rho )(\sigma _1^2e^{-2y} + \sigma _2^2(z))}\\\le & {} \frac{2b^2e^{-2y} + 2(\mu - r)^2}{2(1-\gamma )(1+\rho )(\sigma _1^2e^{-2y} + \tilde{\sigma }_2^2)}\\\le & {} \frac{1}{1+\rho }\max \left\{ \frac{b^2}{\sigma _1^2(1-\gamma )}, \frac{(\mu - r)^2}{\tilde{\sigma }_2^2(1-\gamma )} \right\} \le \frac{1}{1+\rho _0} {\tilde{\varPsi }}. \end{aligned}$$

Let

$$\begin{aligned} {\bar{\varPsi }} \equiv \max \left\{ {\tilde{\varPsi }}, \displaystyle \frac{{\tilde{\varPsi }}}{1+\rho _0}\right\} . \end{aligned}$$
(88)

Then, we can get that \(0 \le \varPsi (y,z) \le {\bar{\varPsi }} < \infty \). Thus, \(\varPsi (y,z)\) is bounded. \(\square \)

Appendix C: Proof of Lemma 3.2

Proof

Recall from (25) that for \(k^*> 0\), G is defined by

$$\begin{aligned} G(y,z,p) = \displaystyle \frac{[be^{-y} + \mu - r + (\sigma _2^2(z) +\rho \sigma _1\sigma _2(z)e^{-y}) p ]^2}{2(1-\gamma )q(y,z)} \ge 0, \end{aligned}$$
(89)

or in the trivial case when \(k^*=0\), \(G\equiv 0\) otherwise. Consider the expression for G given above. We can expand G to a quadratic form in p:

$$\begin{aligned} G(y,z,p) = g_2(y,z) p^2 + g_1(y,z) p + g_0(y,z), \end{aligned}$$
(90)

where

$$\begin{aligned} g_2(y,z)= & {} \displaystyle \frac{(\sigma _2^2(z) + \rho \sigma _1\sigma _2(z)e^{-y})^2}{2(1-\gamma )q(y,z)}, \quad \nonumber \\ g_1(y,z)= & {} \displaystyle \frac{(be^{-y}+\mu - r)( \sigma _2^2(z) + \rho \sigma _1\sigma _2(z)e^{-y})}{(1-\gamma )q(y,z)}, \quad \text {and} \nonumber \\ g_0(y,z)= & {} \displaystyle \frac{(be^{-y} + \mu - r)^2}{2(1-\gamma )q(y,z)}. \end{aligned}$$
(91)

By the definition of q(yz) [see (15)], it is not hard to show that \(|g_2|, |g_1|,\) and \(|g_0|\) are bounded for all \((y,z) \in \mathbb {R}^2\). Then, we can get (36) very easily. \(\square \)

Appendix D: Proof of Lemma 3.3

Proof

Suppose \(\displaystyle \sup _{(y,z) \in \bar{B}_R} (\tilde{Q} - \hat{Q})(y,z) > 0\). Since \(\tilde{Q} \le \hat{Q}\) on \(\partial B_R,\) this implies that \(\tilde{Q} - \hat{Q}\) reaches its maximum at \((y_0, z_0) \in B_R\). So we have that

$$\begin{aligned}&(\tilde{Q} - \hat{Q})_{yy}(y_0,z_0)< 0, \quad (\tilde{Q} - \hat{Q})_{zz}(y_0,z_0) < 0, \end{aligned}$$
(92)
$$\begin{aligned}&\tilde{Q}_y(y_0,z_0) = \hat{Q}_y(y_0,z_0), \quad \text {and} \quad \tilde{Q}_z(y_0,z_0) = \hat{Q}_z(y_0,z_0). \end{aligned}$$
(93)

By (37) we have that, for \((y,z) \in B_R,\)

$$\begin{aligned}&\displaystyle \frac{\sigma _2^2(z)}{2}(\tilde{Q}_{yy} - \hat{Q}_{yy}) + \displaystyle \frac{\sigma _3^2}{2}(\tilde{Q}_{zz} - \hat{Q}_{zz}) \\&\quad - H(y,z,\tilde{Q}, \tilde{Q}_y, \tilde{Q}_z, \tau ) + H(y,z,\hat{Q}, \hat{Q}_y, \hat{Q}_z, \tau ) \ge 0. \end{aligned}$$

Evaluating this inequality at \((y_0,z_0)\) and applying (92), (93) and (32), we can get

$$\begin{aligned} -(1-\tau \gamma )e^{\frac{\hat{Q}(y_0,z_0)}{\tau \gamma - 1}} > -(1-\tau \gamma )e^{\frac{{{\underline{Q}}}(y_0,z_0)}{\tau \gamma - 1}}, \end{aligned}$$

or equivalently \(\hat{Q}(y_0,z_0) > \tilde{Q}(y_0,z_0),\) which is a contradiction. Therefore, \(\tilde{Q} \le \hat{Q}\) on \({\bar{B}}_R\). \(\square \)

Appendix E: Proof of Corollary 3.1

Proof

Suppose \(Q^{(1)}, Q^{(2)} \in C^2({\bar{B}}_R)\) are both solutions of (34). Then, \(Q^{(1)} = Q^{(2)}\) on \(\partial B_R\). Further, for \((y,z)\in B_R\), we have

$$\begin{aligned}&\displaystyle \frac{\sigma _2^2(z)}{2}(Q^{(2)}_{yy} - Q^{(1)}_{yy}) + \displaystyle \frac{\sigma _3^2}{2}(Q^{(2)}_{zz} - Q^{(1)}_{zz}) \nonumber \\&\quad - H(y,z, Q^{(2)}, Q^{(2)}_y, Q^{(2)}_z, \tau ) + H(y,z, Q^{(1)}, Q^{(1)}_y, Q^{(1)}_z, \tau ) = 0. \end{aligned}$$
(94)

Now we assume that \(\displaystyle \sup _{(y,z)\in B_R} (Q^{(2)}-Q^{(1)}) > 0\). Then, \(Q^{(2)} - Q^{(1)}\) attains its maximum at some \((y_0,z_0) \in B_R\). Then,

$$\begin{aligned}&(Q^{(2)}_{yy} - Q^{(1)}_{yy})(y_0,z_0)< 0, \quad (Q^{(2)}_{zz} - Q^{(1)}_{zz})(y_0,z_0) < 0, \end{aligned}$$
(95)
$$\begin{aligned}&Q^{(1)}_y(y_0,z_0) = Q^{(2)}_y(y_0,z_0), \quad \text {and} \quad Q^{(1)}_z(y_0,z_0) = Q^{(2)}_z(y_0,z_0). \end{aligned}$$
(96)

Evaluating (94) at \((y_0,z_0)\) and applying (96) and (95), we arrive at

$$\begin{aligned} (1-\tau \gamma )e^{\frac{Q^{(2)}(y_0,z_0)}{\tau \gamma - 1}} > (1-\tau \gamma )e^{\frac{Q^{(1)}(y_0,z_0)}{\tau \gamma - 1}}, \end{aligned}$$

or \(Q^{(2)}(y_0,z_0) < Q^{(1)}(y_0,z_0),\) which is a contradiction. Therefore, we must have \(Q^{(2)} \le Q^{(1)}\) in \(B_R\). Similarly, we can show that \(Q^{(2)} \ge Q^{(1)}\) in \(B_R\) by assuming that

$$\begin{aligned} \displaystyle \sup _{(y,z)\in B_R} (Q^{(1)}-Q^{(2)}) > 0. \end{aligned}$$

Therefore, \(Q^{(1)} \equiv Q^{(2)}\) on \({\bar{B}}_R\). \(\square \)

Appendix F: Proof of Lemma 3.4

Proof

By the Cauchy–Schwarz Inequality, we have

$$\begin{aligned}&\displaystyle \sum _{i,j,k} D_k a^{ij} D_k Q D_{ij} Q \\&\quad = \sum _{i,j} \left( \sum _k D_k a^{ij} D_k Q \right) D_{ij} Q \le \sum _{i,j} |Da^{ij}| |DQ| \cdot D_{ij} Q\\&\quad = \sum _{i,j}\frac{1}{\sqrt{\epsilon }} |Da^{ij}| |DQ| \cdot \sqrt{\epsilon } D_{ij} Q \le \sum _{i,j} \left( \frac{1}{2\epsilon } |Da^{ij}|^2 |DQ|^2 + \frac{\epsilon }{2} (D_{ij}Q)^2 \right) \\&\quad = \frac{1}{2\epsilon } \left( \sum _{i,j} |Da^{ij}|^2\right) |DQ|^2 + \frac{\epsilon }{2} |D^2 Q|^2. \end{aligned}$$

This completes the proof. \(\square \)

Appendix G: Proof of Theorem 3.3

Proof

We first prove inequality (41). Let

$$\begin{aligned} \tilde{Q}^\tau = - \log \left( \max \left\{ \frac{\beta }{1-\gamma }, 1 \right\} \right) - \sup _{B_R} \{|\psi (y,z)|\}. \end{aligned}$$
(97)

Then, it is easy to show that \(\tilde{Q}^\tau \) is a subsolution of (34). We also have that \(\tilde{Q}^\tau \le \tau \psi = Q^\tau \) on \(\partial B_R\). Therefore, \(\tilde{Q}^\tau \) and \(Q^\tau \) satisfy

$$\begin{aligned} \begin{array}{ll} \frac{\sigma _2^2(z)}{2} \tilde{Q}^\tau _{yy} + \frac{\sigma _3^2}{2} \tilde{Q}^\tau _{zz} - H(y,z, \tilde{Q}^\tau , \tilde{Q}^\tau _y, \tilde{Q}^\tau _z, \tau ) \ge 0, \quad &{}{\mathrm{on}} \quad B_R,\\ \frac{\sigma _2^2(z)}{2} Q^\tau _{yy} + \frac{\sigma _3^2}{2} Q^\tau _{zz} - H(y,z, Q^\tau , Q^\tau _y, Q^\tau _z, \tau ) = 0, \quad &{}{\mathrm{on}} \quad B_R,\\ \tilde{Q}^\tau \le Q^\tau . \quad &{}{\mathrm{on}} \quad \partial B_R. \end{array} \end{aligned}$$
(98)

Then, by Lemma 3.3, \(\tilde{Q}^\tau \le Q^\tau \) holds in \({\bar{B}}_R,\) which gives us (41). Next we prove (38). It is equivalent to show that

$$\begin{aligned} \frac{1}{\tau \gamma }(e^{Q^\tau } - f) \le \frac{1}{\gamma }(e^{\hat{Q}} - f). \end{aligned}$$
(99)

Define \( V(x,y,z) \equiv \frac{1}{\gamma }x^\gamma e^{\hat{Q}(y,z)} \quad \text {and} \quad V^\tau (x,y,z) \equiv \frac{1}{\tau \gamma }x^{\tau \gamma } e^{Q^\tau (y,z)}\). Then, we have

$$\begin{aligned}&\max _{c\ge 0}\left[ \frac{1}{\gamma }(cx)^{\gamma } - cxV_x \right] = (1-\gamma )e^\frac{\hat{Q}}{\gamma - 1} V, \text{ and } \quad \\&\quad \max _{c\ge 0}\left[ \frac{1}{\tau \gamma }(cx)^{\tau \gamma } - cxV^\tau _x \right] = (1-\tau \gamma )e^\frac{Q^\tau }{\tau \gamma - 1}V^\tau . \end{aligned}$$

Now, we define

$$\begin{aligned} V_0(x,y,z)\equiv & {} \frac{1}{\gamma }(x^\gamma e^{\hat{Q}(y,z)} - f(y,z)),\quad \text{ and }\quad \\ V_0^\tau (x,y,z)\equiv & {} \frac{1}{\tau \gamma }(x^{\tau \gamma } e^{Q^\tau (y,z)} - f(y,z)). \end{aligned}$$

Since f does not depend on x,  we have that \((V_0)_x = V_x\) and \((V_0^\tau )_x = V^\tau _x\). Thus, we can get

$$\begin{aligned}&\max _{c \ge 0} \left[ \frac{1}{\gamma }(cx)^\gamma - cx(V_0)_x \right] = (1-\gamma )e^\frac{\hat{Q}}{\gamma - 1} V, \\&\quad \text{ and }\quad \max _{c \ge 0} \left[ \frac{1}{\tau \gamma }(cx)^{\tau \gamma } - cx(V_0)_x \right] = (1-\tau \gamma )e^\frac{Q^\tau }{\tau \gamma - 1} V^\tau . \end{aligned}$$

Define the operator \(\mathcal {L}^{k, c}\) as

$$\begin{aligned} \mathcal {L}^{k,c} V(x,y,z)\equiv & {} \frac{k^2x^2}{2}q(y,z)V_{xx} +\frac{\sigma _2^2(z)}{2} V_{yy} + \frac{\sigma _3^2}{2} V_{zz}\\&+\, kx(\sigma _2^2(z) + \rho \sigma _1\sigma _2(z)e^{-y})V_{xy} \\&+\, (be^{-y} + \mu - r)kxV_x + (r-c)xV_x + {\tilde{\mu }}(z)V_y + a(\bar{z} - z)V_z. \end{aligned}$$

Noting that f satisfies (39) and \(\hat{Q}\) is a supersolution of (34) for \(\tau =1\), we can get that, for \((y, z) \in B_R\),

$$\begin{aligned}&-\beta V_0 + \max _{k, c\ge 0} \left[ \mathcal {L}^{k, c} V_0 +\frac{1}{\gamma } (cx)^\gamma \right] -\frac{1}{\gamma }\nonumber \\&\quad = V\left[ \frac{\sigma _2^2(z)}{2} \hat{Q}_{yy} + \frac{\sigma _3^2}{2} \hat{Q}_{zz} -H(y,z,\hat{Q}, \hat{Q}_y, \hat{Q}_z, 1)\right] \nonumber \\&\qquad -\, \frac{1}{\gamma }\left[ \frac{\sigma _2^2(z)}{2} f_{yy} + \frac{\sigma _3^2}{2} f_{zz} + rxf_x + {\tilde{\mu }}(z)f_y + a(\bar{z} - z)f_z - \beta f + 1 \right] \nonumber \\&\quad = V\left[ \frac{\sigma _2^2(z)}{2} \hat{Q}_{yy} + \frac{\sigma _3^2}{2} \hat{Q}_{zz} -H(y,z,\hat{Q}, \hat{Q}_y, \hat{Q}_z, 1)\right] - \frac{1}{\gamma }[0] \nonumber \\&\quad \le 0. \end{aligned}$$
(100)

Similarly, for \(V_0^\tau \), we have

$$\begin{aligned}&-\beta V_0^\tau + \max _{k, c\ge 0} \left[ \mathcal {L}^{k, c} V_0^\tau +\frac{1}{\tau \gamma } (cx)^{\tau \gamma }\right] -\frac{1}{\tau \gamma }\nonumber \\&\quad =V^\tau \left[ \frac{\sigma _2^2(z)}{2} Q_{yy}^\tau + \frac{\sigma _3^2}{2} Q_{zz}^\tau - H(y,z,Q^\tau , Q^\tau _y, Q^\tau _z, \tau )\right] \nonumber \\&\qquad -\, \frac{1}{\tau \gamma }\left[ \frac{\sigma _2^2(z)}{2} f_{yy} + \frac{\sigma _3^2}{2} f_{zz} + rxf_x + {\tilde{\mu }}(z)f_y + a(\bar{z} - z)f_z - \beta f + 1 \right] \nonumber \\&\quad = 0. \end{aligned}$$
(101)

Suppose that the optimal controls for the above equation are given by \({\tilde{k}}\) and \({\tilde{c}}\). Then, we can rewrite (101) as

$$\begin{aligned} -\beta V_0^\tau + \left[ \mathcal {L}^{\tilde{k}, \tilde{c}} V_0^\tau +\frac{1}{\tau \gamma } (cx)^{\tau \gamma }\right] -\frac{1}{\tau \gamma } =0. \end{aligned}$$
(102)

At the same time, from (100) we obtain

$$\begin{aligned} -\beta V_0 + \left[ \mathcal {L}^{\tilde{k}, \tilde{c}} V_0 +\frac{1}{\gamma } (cx)^{\gamma }\right] -\frac{1}{\gamma } \le 0. \end{aligned}$$
(103)

Define \( g(\tau ;\theta ) = \frac{1}{\tau \gamma }(\theta ^\tau - 1), \quad \forall 0<\tau \le 1. \) Then, the difference between Eqs. (102) and (103) is the function \(g (\tau ; \theta )\), with \(\theta = (cx)^\gamma > 0\) for \(\tau =1\) in (102) and \(\tau <1\) in (103). It is not hard to verify that \(g'(\tau )>0\), so \(g(\tau )\) is a nonincreasing function with respect to \(\tau \). Therefore,

$$\begin{aligned} g(\tau ) \le g(1), \end{aligned}$$
(104)

or equivalently,

$$\begin{aligned} \frac{1}{\tau \gamma }((cx)^{\tau \gamma } - 1) \le \frac{1}{\gamma }((cx)^{\gamma } - 1). \end{aligned}$$
(105)

Therefore, from (103) we can get

$$\begin{aligned} -\beta V_0 + \left[ \mathcal {L}^{\tilde{k}, \tilde{c}} V_0 +\frac{1}{\tau \gamma } (cx)^{\tau \gamma }\right] -\frac{1}{\tau \gamma } \le 0. \end{aligned}$$

Subtracting the above inequality from (102), we have

$$\begin{aligned} \mathcal {L}^{\tilde{k}, \tilde{c}} (V_0^\tau -V_0) \ge 0. \end{aligned}$$
(106)

Note that (106) holds for \(x > 0, (y,z) \in \bar{B}_R\). This equation is used later in this proof to show a contradiction.

To prove the estimate in (99), we wish to show that for \(x >0, (y,z) \in {\bar{B}}_R,\)

$$\begin{aligned}&V_0^\tau (x,y,z) \le V_0(x,y,z), \quad \text{ or } \text{ equivalently, } \quad \frac{1}{\tau \gamma }(x^{\tau \gamma }e^{Q^\tau } - f) \nonumber \\&\quad \le \frac{1}{\gamma }(x^{\gamma }e^{\hat{Q}} - f). \end{aligned}$$
(107)

We then take \(x = 1\) to get the desired result.

From the definition of f [see (40)], we can get

$$\begin{aligned} f(y,z) = \frac{1}{\beta } + \left( 1 - \frac{1}{\beta }\right) \mathbf {E}_{y,z}[ e^{-\beta t_R}] =\frac{1}{\beta }\Big (1 - \mathbf {E}_{y,z}[ e^{-\beta t_R}]\Big ) + \mathbf {E}_{y,z}[ e^{-\beta t_R}]. \end{aligned}$$

Hence \(f > 0\). Therefore,

$$\begin{aligned} - \frac{1}{\tau \gamma } f < -\frac{1}{\gamma }f. \end{aligned}$$
(108)

On the boundary \((y,z) \in \partial B_R\), we have that \(\hat{Q} \ge \psi \). Using (104) with \(\theta = x^\gamma e^{\psi }\), we can get that

$$\begin{aligned} V_0^\tau= & {} \frac{1}{\tau \gamma }(x^{\tau \gamma }e^{\tau \psi } - 1) \le \frac{1}{\gamma }(x^\gamma e^{\psi } - 1) \nonumber \\\le & {} \frac{1}{\gamma }(x^\gamma e^{\hat{Q}} - 1) = V_0, \quad \forall x > 0, (y,z) \in \partial B_R. \end{aligned}$$
(109)

Next we prove that \(V_0^\tau \le V_0\) for \((y,z) \in {\bar{B}}_R\). Suppose on the contrary that

$$\begin{aligned} \sup _{x>0, |(y,z)| \le R} \{ V_0^\tau (x,y,z) - V_0(x,y,z) \} > 0. \end{aligned}$$
(110)

Then, the maximum is attained at some \((x_0,y_0,z_0)\), where \(x_0 > 0\) and \(|(y_0,z_0)| < R\). So at \((x_0,y_0,z_0)\) we have the following:

$$\begin{aligned}&V_0(x_0,y_0,z_0) < V_0^\tau (x_0,y_0,z_0), \end{aligned}$$
(111)
$$\begin{aligned}&(V_0^\tau - V_0)_x(x_0,y_0,z_0) = (V_0^\tau - V_0)_y(x_0,y_0,z_0) = (V_0^\tau - V_0)_z(x_0,y_0,z_0) = 0,\nonumber \\ \end{aligned}$$
(112)

and \(D^2(V_0^\tau - V_0)\) is negative semi-definite at \((x_0,y_0,z_0)\), where \(D^2\) is the \(3 \times 3\) matrix operator of second derivatives (the Hessian). That is, for any \(\eta \in \mathbb {R}^3,\)

$$\begin{aligned} \eta ^T D^2(V_0^\tau - V_0)(x_0,y_0,z_0) \eta \le 0, \end{aligned}$$
(113)

or in expanded form, at \((x_0, y_0, z_0)\) for any \(\eta _1, \eta _2, \eta _3 \in \mathbb {R}\),

$$\begin{aligned}&(V_0^\tau - V_0)_{xx} \eta _1^2 + (V_0^\tau - V_0)_{yy}\eta _2^2 + (V_0^\tau - V_0)_{zz} \eta _3^2 \nonumber \\&\quad +\, 2(V_0^\tau - V_0)_{xy} \eta _1\eta _2 + 2(V_0^\tau - V_0)_{xz} \eta _1\eta _3 + 2(V_0^\tau - V_0)_{yz} \eta _2\eta _3 \le 0. \end{aligned}$$
(114)

Note that this implies

$$\begin{aligned} (V_0^\tau - V_0)_{xx}, \,\, (V_0^\tau - V_0)_{yy}, \,\, (V_0^\tau - V_0)_{zz} \le 0 \end{aligned}$$
(115)

at the point \((x_0,y_0,z_0)\). We also note that

$$\begin{aligned} q(y,z)= & {} \sigma _2^2(z) + 2\rho \sigma _1\sigma _2 e^{-y} + \sigma _1^2 e^{-2y} \nonumber \\\ge & {} \sigma _2^2(z) + 2\rho \sigma _1\sigma _2 e^{-y} + \rho ^2\sigma _1^2 e^{-2y} =(\sigma _2(z) + \rho \sigma _1 e^{-y})^2. \end{aligned}$$
(116)

Now we evaluate (106) at \((x_0,y_0,z_0)\) and apply conditions (111) and (112). Then, at the point \((x_0,y_0,z_0)\), we have

$$\begin{aligned}&\frac{\sigma _2^2(z)}{2} (V_0^\tau - V_0)_{yy} + \frac{\sigma _3^2}{2} (V_0^\tau - V_0)_{zz} + \frac{{\tilde{k}}^2x^2}{2}q(y,z)(V_0^\tau - V_0)_{xx} \nonumber \\&\quad +\, {\tilde{k}}x\sigma _2(z)(\sigma _2(z) + \rho \sigma _1 e^{-y})(V_0^\tau - V_0)_{xy} > 0. \end{aligned}$$
(117)

Applying (115)–(117), we have

$$\begin{aligned}&\frac{\sigma _2^2(z)}{2} (V_0^\tau - V_0)_{yy} + \frac{{\tilde{k}}^2x^2}{2}(\sigma _2(z) + \rho \sigma _1 e^{-y})^2(V_0^\tau - V_0)_{xx} \\&\quad +\, {\tilde{k}}x\sigma _2(z)(\sigma _2(z) + \rho \sigma _1 e^{-y})(V_0^\tau - V_0)_{xy} > 0. \end{aligned}$$

at \((x_0,y_0,z_0)\). Taking \(\eta _1 = \frac{{\tilde{k}} x}{\sqrt{2}}(\sigma _2 + \rho \sigma _1 e^{-y}), \eta _2 = \frac{\sigma _2(z)}{\sqrt{2}}\), and \(\eta _3 = 0\), we get a contradiction to (114). Therefore, \(V_0^\tau \le V_0\) for \((y,z) \in {\bar{B}}_R\). Thus, (107) holds. We take \(x=1\) in (107) to arrive at (38). \(\square \)

Appendix H: Proof of Theorem 3.4

Proof

Since \(Q_\tau ^0\) is a solution of (42), by virtue of the definition of H, we have that

$$\begin{aligned}&\frac{\sigma _2^2(z)}{2}(Q^0_\tau )_{yy} + \frac{\sigma _3^2}{2}(Q^0_\tau )_{zz} + \tau \bigg [\frac{\sigma _2^2(z)}{2}(Q^0_\tau )^2_{y} + \frac{\sigma _3^2}{2}(Q^0_\tau )^2_{z} \\&\quad +\, {\tilde{\mu }}(z)(Q^0_\tau )_{y} + a(\bar{z} - z)(Q^0_\tau )_{z} - \beta + e^{-Q^0_\tau } \bigg ] = 0. \end{aligned}$$

Then, we can get

$$\begin{aligned} \frac{\sigma _2^2(z)}{2}(Q^0_\tau )_{yy} + \frac{\sigma _3^2}{2}(Q^0_\tau )_{zz} + \tau {\tilde{\mu }}(z)(Q^0_\tau )_{y} + \tau a(\bar{z} - z)(Q^0_\tau )_{z} - \tau \beta \le 0. \end{aligned}$$
(118)

Applying Ito’s rule to \(Q_\tau ^0(\hat{Y}_t,\hat{Z}_t)\) and using (118), we have that, for \(0 \le t \le {\bar{t}}_R,\)

$$\begin{aligned} dQ_\tau ^0(\hat{Y}_t,\hat{Z}_t)= & {} (Q_\tau ^0)_{y}\Big [\tau {\tilde{\mu }}(\hat{Z}_t)\mathrm {d}t + \sigma _2(\hat{Z}_t)\mathrm {d}B_{2,t}\Big ] \\&+ \,(Q_\tau ^0)_{z} \Big [\tau a(\bar{z} - \hat{Z}_t)\mathrm {d}t + \sigma _3 \mathrm {d}B_{3,t}\Big ] \\&+ \,\frac{1}{2}(Q_\tau ^0)_{yy} \sigma _2^2(\hat{Z}_t)\mathrm {d}t + \frac{1}{2}(Q_\tau ^0)_{zz} \sigma _3^2 \mathrm {d}t \\= & {} \left[ \frac{\sigma _2^2(\hat{Z}_t)}{2}(Q^0_\tau )_{yy} + \frac{\sigma _3^2}{2}(Q^0_\tau )_{zz}\right. \\&\left. + \,\tau {\tilde{\mu }}(\hat{Z}_t)(Q^0_\tau )_{y} + \tau a(\bar{z} - \hat{Z}_t)(Q^0_\tau )_{z} \right] \mathrm {d}t \\&+ \,\sigma _2(\hat{Z}_t) (Q_\tau ^0)_y \mathrm {d} B_{2,t} + \sigma _3(Q_\tau ^0)_z \mathrm {d}B_{3,t} \\\le & {} \, \tau \beta \mathrm {d}t + \sigma _2(\hat{Z}_t) (Q_\tau ^0)_y \mathrm {d} B_{2,t} + \sigma _3(Q_\tau ^0)_z \mathrm {d}B_{3,t}. \end{aligned}$$

Integrate it from 0 to \(\bar{t}_R\), and we can get

$$\begin{aligned} Q_\tau ^0(\hat{Y}_{{\bar{t}}_R},\hat{Z}_{{\bar{t}}_R}) - Q_\tau ^0(y,z)\le & {} \int _0^{{\bar{t}}_R} \tau \beta \mathrm{d}t + \int _0^{{\bar{t}}_R} \sigma _2(\hat{Z}_t) (Q_\tau ^0)_y \mathrm{d} B_{2,t} \\&+ \int _0^{{\bar{t}}_R} \sigma _3(Q_\tau ^0)_z \mathrm{d}B_{3,t}. \end{aligned}$$

Since \(Q^0_\tau = 0\) on \(\partial B_R\), we can take expectations to the above inequality and get

$$\begin{aligned} -Q_\tau ^0(y,z) \le \tau \beta \mathbf {E}[{\bar{t}}_R] \le \beta \mathbf {E}[{\bar{t}}_R], \end{aligned}$$

which proves the first inequality in (43). Define \(\phi (y,z) = e^{Q_\tau ^0(y,z)}\). Then,

$$\begin{aligned} \phi _y= & {} (Q_\tau ^0)_y \phi , \quad \phi _{z} = (Q_\tau ^0)_z \phi ,\quad \phi _{yy} = ( (Q_\tau ^0)_{yy} + (Q_\tau ^0)_y^2) \phi , \quad \\ \phi _{zz}= & {} ((Q_\tau ^0)_{zz} + (Q_\tau ^0)_z^2)\phi . \end{aligned}$$

Then, it is easy to check that \(\phi \) satisfies

$$\begin{aligned} \begin{array}{ll} \frac{\sigma _2^2(z)}{2}\phi _{yy} + \frac{\sigma _3^2}{2}\phi _{zz} - \frac{1-\tau }{2\phi } (\sigma _2^2(z) \phi ^2_y + \sigma _3^2 \phi ^2_z) &{}\\ \quad \quad + \, \tau \big ({\tilde{\mu }}(z)\phi _y + a(\bar{z} - z)\phi _z\big ) + \tau (1-\beta \phi ) = 0, \quad &{}\text {on} \quad B_R,\\ \phi = 1. &{}\text {on} \quad \partial B_R. \end{array} \end{aligned}$$
(119)

Since the terms \(\displaystyle \frac{1-\tau }{2\phi } (\sigma _2^2(z) \phi ^2_y + \sigma _3^2 \phi ^2_z)\) and \(\tau \beta \phi \) are nonnegative, we can get an inequality:

$$\begin{aligned} \frac{\sigma _2^2(z)}{2}\phi _{yy} + \frac{\sigma _3^2}{2}\phi _{zz} + \tau \big ({\tilde{\mu }}(z)\phi _y + a(\bar{z} - z)\phi _z\big ) + \tau \ge 0. \end{aligned}$$

Next, we can apply Ito’s rule to \(\phi (\hat{Y}_t,\hat{Z}_t)\) and use the above inequality to obtain

$$\begin{aligned} d\phi (\hat{Y}_t,\hat{Z}_t)&= \phi _{y}\Big [\tau {\tilde{\mu }}(\hat{Z}_t)\mathrm {d}t + \sigma _2(\hat{Z}_t)\mathrm {d}B_{2,t}\Big ] + \phi _{z}\Big [\tau a(\bar{z} - \hat{Z}_t)\mathrm {d}t + \sigma _3 \mathrm {d}B_{3,t}\Big ] \\&\quad + \frac{1}{2}\phi _{yy} \sigma _2^2(\hat{Z}_t)\mathrm {d}t + \frac{1}{2}\phi _{zz} \sigma _3^2 \mathrm {d}t \\&= \left[ \frac{\sigma _2^2(\hat{Z}_t)}{2}\phi _{yy} + \frac{\sigma _3^2}{2}\phi _{zz} + \tau {\tilde{\mu }}(\hat{Z}_t)\phi _{y} + \tau a(\bar{z} - \hat{Z}_t) \phi _{z} \right] \mathrm {d}t \\&\quad + \sigma _2(\hat{Z}_t) \phi _y \mathrm {d} B_{2,t} + \sigma _3\phi _z \mathrm {d}B_{3,t} \\&\ge \, - \tau \mathrm {d}t + \sigma _2(\hat{Z}_t) \phi _y \mathrm {d} B_{2,t} + \sigma _3\phi _z \mathrm {d}B_{3,t}. \end{aligned}$$

The integral form is

$$\begin{aligned} \phi (\hat{Y}_{{\bar{t}}_R},\hat{Z}_{{\bar{t}}_R}) - \phi (y,z) \ge - \int _0^{{\bar{t}}_R} \tau \mathrm{d}t + \int _0^{{\bar{t}}_R} \sigma _2(\hat{Z}_t) \phi _y \mathrm{d} B_{2,t} + \int _0^{{\bar{t}}_R} \sigma _3\phi _z \mathrm{d}B_{3,t}.\nonumber \\ \end{aligned}$$
(120)

Using the boundary condition that \(\phi =1\) on \(\partial B_R\), we can get that \(1 - \phi (y,z) \ge -\tau \mathbf {E}[{\bar{t}}_R]\), which implies

$$\begin{aligned} Q_\tau ^0 \le \log (1 + \tau \mathbf {E}[{\bar{t}}_R]) \le \log (1 + \mathbf {E}[{\bar{t}}_R]). \end{aligned}$$

This proves the second inequality in (43). \(\square \)

Appendix I: Proof of Lemma 4.1

Proof

By the definitions of \((k^*, c^*)\), Theorem 3.6, and the fact that \({\tilde{Q}}\) is bounded, it is easy to show that \(k^*\) and \(c^*\) are bounded. Further, by the definition of \(k^*\) and q(yz) [see (15)], we can get that \(e^{-y} k^*\) is bounded. Therefore, we can assume that there is a constant \(\varLambda \) such that

$$\begin{aligned} |(be^{-Y_t} + \mu - r) k^*_t + (r-c^*_t)|\le \varLambda , \quad |\sigma _1 k^*_t e^{-Y_t}| \le \varLambda , \quad |\sigma _2(Z_t) k^*_t|\le \varLambda .\nonumber \\ \end{aligned}$$
(121)

From Eq. (9), we can get that

$$\begin{aligned} X_T= & {} x\exp \bigg (\int _0^T \left[ (be^{-Y_t} + \mu - r) k^*_t + (r-c^*_t)\right. \\&\left. -\,\frac{1}{2}\left[ \sigma _1^2 (k^*_t e^{-Y_t})^2 + (\sigma _2(Z_t) k^*_t)^2\right] \right] \mathrm{d}t\\&+ \int _0^T \sigma _1 k^*_t e^{-Y_t} \mathrm{d} B_{1, t}+\int _0^T \sigma _2(Z_t) k^*_t \mathrm{d} B_{2,t}\bigg ). \end{aligned}$$

Using the above equation and (121), we can get (71). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, T., Varga, K. Portfolio Optimization for Assets with Stochastic Yields and Stochastic Volatility. J Optim Theory Appl 182, 691–729 (2019). https://doi.org/10.1007/s10957-019-01513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01513-y

Keywords

Mathematics Subject Classification