Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Perturbation Analysis of Singular Semidefinite Programs and Its Applications to Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider sensitivity of a semidefinite program under perturbations in the case that the primal problem is strictly feasible and the dual problem is weakly feasible. When the coefficient matrices are perturbed, the optimal values can change discontinuously as explained in concrete examples. We show that the optimal value of such a semidefinite program changes continuously under conditions involving the behavior of the minimal faces of the perturbed dual problems. In addition, we determine what kinds of perturbations keep the minimal faces invariant, by using the reducing certificates, which are produced in facial reduction. Our results allow us to classify the behavior of the minimal face of a semidefinite program obtained from a control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anjos, M.F., Lasserre, J. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science. Springer, Boston (2012)

    MATH  Google Scholar 

  2. Scherer, C.W.: LMI relaxations in robust control. Eur. J. Control 12, 3–29 (2006)

    Article  MathSciNet  Google Scholar 

  3. de Klerk, E.: Aspects of Semidefinite Programming : Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Boston (2002)

    Book  Google Scholar 

  4. Tunçel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization. American Mathematical Society, Toronto (2010)

    Book  Google Scholar 

  5. Henrion, D., Lasserre, J.B.: Detecting global optimality and extracting solutions in GloptiPoly. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control. Lecture Notes on Control and Information Sciences. Springer, Berlin (2005)

    Chapter  Google Scholar 

  6. Navascués, M., García-Sáez, A., Acín, A., Pironio, S., Plenio, M.B.: A paradox in bosonic energy computations via semidefinite programming relaxations. New J. Phys. 15, 023026 (2013)

    Article  MathSciNet  Google Scholar 

  7. Waki, H., Nakata, N., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimization. Comput. Optim. Appl. 53(3), 824–844 (2012)

    Article  MathSciNet  Google Scholar 

  8. Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone-convex programming problem. J. Aust. Math. Soc. 30(3), 369–380 (1980/81)

  9. Borwein, J.M., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83, 495–530 (1981)

    Article  MathSciNet  Google Scholar 

  10. Pataki, G.: Strong duality in conic linear programming: facial reduction and extended dual. In: Bailey, D., et al. (eds.) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol. 50, pp. 613–634. Springer, New York (2013)

    Chapter  Google Scholar 

  11. Waki, H., Muramatsu, M.: Facial reduction algorithms for conic optimization problems. J. Optim. Theory Appl. 158, 188–215 (2013)

    Article  MathSciNet  Google Scholar 

  12. Drusvyatskiy, D., Wolkowicz, H.: The many faces of degeneracy in conic optimization. Found. Trends Optim. 3(2), 77–170 (2017)

    Article  Google Scholar 

  13. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  14. Cheung, Y.L., Wolkowicz, H.: Sensitivity analysis of semidefinite programs without strong duality. University of Waterloo (2014)

  15. Gol’šhteĭn, E.G.: Theory of Convex Programming. Translations of Mathematical Monographs, vol. 36. American Mathematical Society, Providence (1972)

    Google Scholar 

  16. Sturm, J.F., Zhang, S.: On sensitivity of central solutions in semidefinite programming. Math. Program. 90, 205–227 (2001)

    Article  MathSciNet  Google Scholar 

  17. Yildirim, E.A., Todd, M.Todd: Sensitivity analysis in linear programming and semidefinite programming using interior-point methods. Math. Program. 90, 229–261 (2001)

    Article  MathSciNet  Google Scholar 

  18. Mohammad-Nezhad, A., Terlaky, T.: Parametric analysis of semidefinite optimization. Optimization 69, 187–216 (2020)

    Article  MathSciNet  Google Scholar 

  19. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  20. Waki, H., Sebe, N.: Application of facial reduction to \(H_\infty \) state feedback control problem. Int. J. Control 92, 303–316 (2019)

    Article  Google Scholar 

  21. Borwein, J.M., Wolkowicz, H.: Characterization of optimality for the abstract convex program with finite-dimensional range. J. Aust. Math. Soc. Ser. A 30, 390–411 (1981)

    Article  MathSciNet  Google Scholar 

  22. Sturm, J.F.: Error bounds for linear matrix inequalities. SIAM J. Optim. 10(4), 1228–1248 (2000)

    Article  MathSciNet  Google Scholar 

  23. Liu, M., Pataki, G.: Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming. Math. Program. 167, 435–480 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lourenço, B.F., Muramatsu, M., Tsuchiya, T.: A structural geometrical analysis of weakly infeasible sdps. J. Oper. Res. Soc. Jpn. 59, 241–257 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Todd, M.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  Google Scholar 

  26. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  27. Stewart, G.W.: On the continuity of the generalized inverse. SIAM J. Appl. Math. 17(1), 33–45 (1969)

    Article  MathSciNet  Google Scholar 

  28. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  29. Iwasaki, T., Skelton, R.E.: All controllers for the general \(H_{\infty }\) control problem: LMI existence conditions and state space formulas. Automatica 30(8), 1307–1317 (1994)

    Article  MathSciNet  Google Scholar 

  30. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) and SDPA-GMP User’s Manual—Version 7.1.1. Tokyo Institute of Technology, Tokyo (2008)

    Google Scholar 

Download references

Acknowledgements

The first author was supported by JSPS KAKENHI Grant Number JP15K04993 and JP19K03631. A part of his work was done when he stayed in University of Konstanz with the financial support from Tokyo University of Marine Science and Technology. The second author was supported by JSPS KAKENHI Grant Numbers JP22740056, JP26400203, JP17H01700, JP20K11696, and ERATO HASUO Metamathematics for Systems Design Project (No.JPMJER1603), JST. We would like to thank Noboru Sebe in Kyushu Institute of Technology for fruitful discussions and anonymous referees for their careful reading of the paper and for their comments that helped us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Sekiguchi.

Additional information

Communicated by Levent Tunçel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekiguchi, Y., Waki, H. Perturbation Analysis of Singular Semidefinite Programs and Its Applications to Control Problems. J Optim Theory Appl 188, 52–72 (2021). https://doi.org/10.1007/s10957-020-01780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01780-0

Keywords

Mathematics Subject Classification