Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The radius of robust feasibility provides a numerical value for the largest possible uncertainty set that guarantees robust feasibility of an uncertain linear conic program. This determines when the robust feasible set is non-empty. Otherwise, the robust counterpart of an uncertain program is not well defined as a robust optimization problem. In this paper, we address a key fundamental question of robust optimization: How to compute the radius of robust feasibility of uncertain linear conic programs, including linear programs? We first provide computable lower and upper bounds for the radius of robust feasibility for general uncertain linear conic programs under the commonly used ball uncertainty set. We then provide important classes of linear conic programs where the bounds are calculated by finding the optimal values of related semi-definite linear programs, among them uncertain semi-definite programs, uncertain second-order cone programs and uncertain support vector machine problems. In the case of an uncertain linear program, the exact formula allows us to calculate the radius by finding the optimal value of an associated second-order cone program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anjos, M.: Conic linear optimization. In: Terlaky, T., Anjos, M.F., Ahmed, S. (eds.) Advances and trends in optimization with engineering applications. MOS-SIAM Ser. Optim. 24, pp. 107–120. SIAM, Philadelphia (2017)

  2. Beer, G.: Topology on closed and closed convex sets. Kluwer, Dordrecht-Boston (1993)

    Book  Google Scholar 

  3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton, Princeton U.P (2009)

    Book  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88A, 411–424 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Selected topics in robust convex optimization. Math. Program. 112A, 125–158 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge U. P, London (2004)

    Book  Google Scholar 

  8. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems. Math. Program. 103A, 95–126 (2005)

    Article  MathSciNet  Google Scholar 

  9. Carrizosa, E., Nickel, S.: Robust facility location. Math. Meth. Oper. Res. 58, 331–349 (2003)

    Article  MathSciNet  Google Scholar 

  10. Chen, J., Li, J., Li, X., Lv, Y., Yao, J.-C.: Radius of robust feasibility of system of convex inequalities with uncertain data. J. Optim. Theory Appl. 184, 384–399 (2020)

    Article  MathSciNet  Google Scholar 

  11. Chuong, T.D., Jeyakumar, V.: An exact formula for radius of robust feasibility of uncertain linear programs. J. Optim. Theory Appl. 173, 203–226 (2017)

    Article  MathSciNet  Google Scholar 

  12. Goberna, M.A., López, M.A.: Linear semi-infinite optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  13. Goberna, M.A., Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust solutions of uncertain multi-objective linear semi-infinite programming. SIAM J. Optim. 24, 1402–1419 (2014)

    Article  MathSciNet  Google Scholar 

  14. Goberna, M.A., Jeyakumar, V., Li, G., Vicente-Pérez, J.: Robust solutions to multi-objective linear programs with uncertain data. Eur. J. Oper. Res. 242, 730–743 (2015)

    Article  MathSciNet  Google Scholar 

  15. Goberna, M.A., Jeyakumar, V., Li, G., Linh, N.: Radius of robust feasibility and optimality of uncertain convex programs. Oper. Res. Lett. 44, 67–73 (2016)

    Article  MathSciNet  Google Scholar 

  16. Göpfert, A., Riahi, H., Tammer, Ch., Zălinescu, C.: Variational methods in partially ordered spaces. Springer, New York (2003)

    MATH  Google Scholar 

  17. Koch, T., Hiller, B., Pfetsch, M., Schewe, L. (eds.): Evaluating gas network capacities. SIAM, Philadelphia (2015)

    MATH  Google Scholar 

  18. Li, X.-B., Wang, Q.-L.: A note on the radius of robust feasibility for uncertain convex programs. Filomat 32, 6809–6818 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liers, F., Schewe, L., Thürauf, J.: Radius of Robust Feasibility for Mixed-Integer Problems to appear in INFORMS J. Comput. https://doi.org/10.1287/ijoc.2020.1030 (2020)

  20. Zhang, Q., Grossmann, I.E., Lima, R.M.: On the relation between flexibility analysis and robust optimization for linear systems. AIChE J. 62, 3109–3123 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Australian Research Council, Discovery Project DP120100467 and the Ministry of Science, Innovation and Universities of Spain and the European Regional Development Fund (ERDF) of the European Commission, Grant PGC2018-097960-B-C22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Goberna.

Additional information

Communicated by Marc Teboulle.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of Basic Properties of Admissible Sets

Appendix: Proofs of Basic Properties of Admissible Sets

In this appendix, we provide the proof of the basic properties of the admissible set of parameters (Proposition 2.1).

Proof of Proposition 2.1

Proof

[Proof of (a)] Direct verification gives us that

It now follows from the well-known existence theorem for linear systems [11, Corollary 3.1.1] that \(F_{r}({\overline{A}},{\overline{b}})\ne \emptyset \) if and only if

$$\begin{aligned} \left( 0_{n},-1\right) \notin \overline{{\mathrm{cone}}\,\left\{ \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}}_{i}+{\varDelta } a_{i},-{\overline{b}}_{i}-{\varDelta } b_{i}\right) :\lambda \in {{\mathcal {B}}},\Vert ({\varDelta } a_{i},{\varDelta } b_{i})\Vert \le r_{i},\forall i\right\} }, \end{aligned}$$

which, in turn, is equivalent to the statement

$$\begin{aligned} \begin{array}{ll} \left( 0_{n},1\right) &{} \notin \overline{{\mathrm{cone}}\,\left\{ \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}}_{i}+{\varDelta } a_{i},{\overline{b}}_{i}+{\varDelta } b_{i}\right) :\lambda \in {{\mathcal {B}}},\Vert ({\varDelta } a_{i},{\varDelta } b_{i})\Vert \le r_{i},\forall i\right\} } \\ &{} =\overline{{\mathrm{cone}}\,\left\{ \displaystyle \sum \limits _{i=1}^{m} \lambda _{i}\left( ({\overline{a}}_{i},{\overline{b}}_{i})+r_{i}{{\mathbb {B}}} _{n+1}\right) :\lambda \in {{\mathcal {B}}}\right\} } . \end{array} \end{aligned}$$

Thus, the conclusion follows.

[Proof of (b)] Let \({{\mathcal {B}}}\) be the compact base of \(K^{*} \). Then, \(0_{m}\notin {{\mathcal {B}}}\), and so,

$$\begin{aligned} \mu :=\min \{\min _{1\le i\le m}\big \vert {\lambda }_{i}\big \vert :\lambda \in {{\mathcal {B}}}\}>0. \end{aligned}$$

Define \(M=\max \{\Vert \displaystyle \sum \limits _{i=1}^{m}{\lambda }_{i}( {\overline{a}}_{i},{\overline{b}}_{i})\Vert :\lambda \in {{\mathcal {B}}}\}<+\infty .\) We shall prove by contradiction that \(C({\overline{A}},{\overline{b}})\subseteq \frac{M}{\mu }{{\mathbb {B}}}_{m}.\) If, in the contrary, \(C({\overline{A}}, {\overline{b}}) \nsubseteq \frac{M}{\mu }{{\mathbb {B}}}_{m}\), then we can take \( r\in C({\overline{A}},{\overline{b}})\) such that \(\left\| r\right\| \ge \frac{M+\epsilon }{\mu }\) for some \(\epsilon >0.\) Now, fix any \(\widetilde{ \lambda }\in {{\mathcal {B}}}\). Note that

$$\begin{aligned} \displaystyle \sum \limits _{i=1}^{m}\left| {\widetilde{\lambda }} _{i}\right| r_{i}\ge \mu \displaystyle \sum \limits _{i=1}^{m}r_{i}\ge \mu \sqrt{\displaystyle \sum \limits _{i=1}^{m}r_{i}^{2}}\ge M+\epsilon \ge \Vert \displaystyle \sum \limits _{i=1}^{m}{\widetilde{\lambda }}_{i}({\overline{a}} _{i},{\overline{b}}_{i})\Vert +\epsilon . \end{aligned}$$

It follows that

$$\begin{aligned} \epsilon {{\mathbb {B}}}_{n+1} \subseteq \displaystyle \sum \limits _{i=1}^{m} {\widetilde{\lambda }}_{i}({\overline{a}}_{i},{\overline{b}}_{i})+\displaystyle \sum \limits _{i=1}^{m}\left| {\widetilde{\lambda }}_{i}\right| r_{i} {{\mathbb {B}}}_{n+1}= & {} \displaystyle \sum \limits _{i=1}^{m}{\widetilde{\lambda }} _{i}(\left( {\overline{a}}_{i},{\overline{b}}_{i})+r_{i}{{\mathbb {B}}}_{n+1}\right) \\\subseteq & {} \displaystyle \bigcup \limits _{\lambda \in {{\mathcal {B}}}}\left\{ \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}(\left( {\overline{a}}_{i}, {\overline{b}}_{i})+r_{i}{{\mathbb {B}}}_{n+1}\right) \right\} , \end{aligned}$$

and so

$$\begin{aligned} \left( 0_{n},1\right) \in {\mathrm{cone}}\,\left\{ \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( ({\overline{a}}_{i},{\overline{b}} _{i})+r_{i}{{\mathbb {B}}}_{n+1}\right) :\lambda \in {{\mathcal {B}}}\right\} . \end{aligned}$$

Then, by Proposition 2.1 part (1) , \(r\notin C(\overline{ A},{\overline{b}})\) (contradiction). Hence, \(C({\overline{A}},{\overline{b}})\) is bounded. Thus, the conclusion follows by the fact that \(C({\overline{A}}, {\overline{b}})\) is radiant.

[Proof of (c)] Let us show the “\(\left[ \Longrightarrow \right] \)” direction first. Assume that \(\sigma _{r}^{{{\mathcal {B}}}}\) satisfies the Slater condition. As \(r\in {{\mathbb {R}}}^m_{++}\), there exists \(\xi >0\) such that \(r+\xi {{\mathbb {B}}}_{m}\subseteq {{\mathbb {R}}}_{++}^{m}\). Since \({{\mathcal {B}}}\) is a compact base (and so, \(0_m \notin {{\mathcal {B}}}\)), \(\eta :=\max \limits _{\lambda \in {{\mathcal {B}}}}\max \limits _{1\le i\le m}\left| \lambda _{i}\right| \) is a positive real number. Consider the mapping

$$\begin{aligned} \begin{array}{ccccc} &{} &{} (m) &{} &{} \\ {\varPhi } : &{} {{\mathbb {R}}}^{m}\times &{} \overbrace{{{\mathbb {R}}}^{n+1}\times ...\times {{\mathbb {R}}}^{n+1}} &{} \longrightarrow &{} {{\mathbb {R}}}^{n+1} \\ &{} \lambda &{} \left( z^{1},...,z^{m}\right) &{} &{} \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}z^{i} \end{array} \end{aligned}$$

Since \({\varPhi } \) is continuous (as it has quadratic components) and the set \( D_{r}:=\mathcal {B\times }\prod \limits _{i=1}^{m}\left[ \left( {\overline{a}} _{i},{\overline{b}}_{i}\right) +r_{i}{{\mathbb {B}}}_{n+1}\right] \) is compact, \( C_{r}:={\varPhi } \left( D_{r}\right) \) is a compact subset of \({{\mathbb {R}}}^{n+1}\) too. By the Slater condition, there exists \(x^{0}\in {{\mathbb {R}}}^{n}\) such that \(\left\langle \left( y,y_{n+1}\right) ,\left( x^{0},1\right) \right\rangle <0\) for all \(\left( y,y_{n+1}\right) \in C_{r}.\) Let \(\epsilon >0\) be such that

$$\begin{aligned} \begin{array}{ll} -\epsilon &{} =\max \left\{ \left\langle \left( y,y_{n+1}\right) ,\left( x^{0},1\right) \right\rangle :\left( y,y_{n+1}\right) \in C_{r}\right\} \\ &{} =\max \left\{ \left\langle {\varPhi } \left( d\right) ,\left( x^{0},1\right) \right\rangle :d\in D_{r}\right\} . \end{array} \end{aligned}$$

Given \(t\in {{\mathbb {R}}}_{++}^{m},\) we consider an element of \(D_{t}\) of the form

$$\begin{aligned} d^{t}=\left( \lambda ^{t},\left( {\overline{a}}_{1},{\overline{b}}_{1}\right) +t_{1}u^{1,t},...,\left( {\overline{a}}_{m},{\overline{b}}_{m}\right) +t_{m}u^{m,t}\right) , \end{aligned}$$

with \(\lambda ^{t}\in {{\mathcal {B}}}\) and \(u^{i,t}\in {{\mathbb {B}}}_{n+1},\) \( i=1,...,m,\) arbitrarily chosen. We define the vector \(d^{r}:=\left( \lambda ^{t},\left( {\overline{a}}_{1},{\overline{b}}_{1}\right) +r_{1}u^{1,t},...,\left( {\overline{a}}_{m},{\overline{b}}_{m}\right) +r_{m}u^{m,t}\right) \in D_{r}.\) Since

$$\begin{aligned}&\left\| {\varPhi } \left( d^{t}\right) -{\varPhi } \left( d^{r}\right) \right\| =\left\| \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( t_{i}-r_{i}\right) u^{i,t}\right\| \le m\eta \left\| t-r\right\| ,\\&\left| \left\langle {\varPhi } \left( d^{t}\right) -{\varPhi } \left( d^{r}\right) ,\left( x^{0},1\right) \right\rangle \right| \le m\eta \left\| \left( x^{0},1\right) \right\| \left\| t-r\right\| , \end{aligned}$$

and so \(\left\langle {\varPhi } \left( d^{t}\right) ,\left( x^{0},1\right) \right\rangle \le m\eta \left\| \left( x^{0},1\right) \right\| \left\| t-r\right\| -\epsilon \). Hence, if

$$\begin{aligned}\left\| t-r\right\| \le \min \left\{ \frac{\epsilon }{2m\eta \left\| \left( x^{0},1\right) \right\| },\xi \right\} , \end{aligned}$$

then, one has

$$\begin{aligned} \max \left\{ \left\langle \left( y,y_{n+1}\right) ,\left( x^{0},1\right) \right\rangle :\left( y,y_{n+1}\right) \in C_{t}\right\} \le -\frac{ \epsilon }{2}<0, \end{aligned}$$

which shows that \(x^{0}\) is a Slater point for \(\sigma _{t}^{{{\mathcal {B}}}}.\) This implies that \(t\in C({\overline{A}},{\overline{b}}).\) Thus, one has \(r\in {\mathrm{int}}\,C({\overline{A}},{\overline{b}}).\)

We now show the reverse direction “\(\left[ \Longleftarrow \right] . \)” Let \(r\in {\mathrm{int}}\,C({\overline{A}}, {\overline{b}})\) and for all \(\lambda \in {{\mathcal {B}}}\), \(\displaystyle \sum \nolimits _{i=1}^{m}r_{i}\lambda _{i}>0.\) Then, there exists \(\epsilon >0\) such that \(r+\epsilon 1_{m}\in C({\overline{A}},{\overline{b}})\) and

$$\begin{aligned}\gamma :=\min \left\{ \displaystyle \sum \limits _{i=1}^{m}r_{i}\lambda _{i}:\lambda \in {{\mathcal {B}}}\right\} >0. \end{aligned}$$

We consider perturbations of the coefficients of \(\sigma _{r}^{{{\mathcal {B}}}}\) preserving the index set \(\mathcal {B\times }\displaystyle \prod \nolimits _{i=1}^{m}\left( r_{i}{{\mathbb {B}}}_{n+1}\right) \) and we measure such perturbations by means of the Chebyshev metric \(d_{\infty }\). The coefficients vector of \(\sigma _{r}^{{{\mathcal {B}}}}\) can be expressed as

$$\begin{aligned} \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left[ \left( {\overline{a}}_{i}, {\overline{b}}_{i}\right) +r_{i}u^{i}\right] =\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}}_{i},{\overline{b}}_{i}\right) +\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}r_{i}u^{i}, \end{aligned}$$
(17)

where \(\lambda \in {{\mathcal {B}}}\) and \(u^{i}\in {{\mathbb {B}}}_{n+1},\) \(i=1,...,m.\) Consider an additive perturbation \(\delta w,\) with \(0<\delta <\gamma \epsilon \) and \(w\in {{\mathbb {B}}}_{n+1}\) of the coefficient vector in (17). Let \(v:=\frac{w}{\displaystyle \sum \nolimits _{1\le i\le m}r_{i}\lambda _{i}}.\) Since \(\left\| u^{i}+\delta v\right\| \le 1+\delta \left\| v\right\| \le 1+\frac{\delta }{\gamma }\) for all i,  one has

$$\begin{aligned} \begin{array}{ll} \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left[ \left( {\overline{a}}_{i}, {\overline{b}}_{i}\right) +r_{i}u^{i}\right] +\delta w &{} =\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}}_{i},{\overline{b}} _{i}\right) +\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}r_{i}\left( u^{i}+\delta v\right) \\ &{} \in \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}}_{i}, {\overline{b}}_{i}\right) +\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}r_{i}\left( 1+\frac{\delta }{\gamma }\right) {{\mathbb {B}}}_{n+1} \\ &{} \subseteq \displaystyle \sum \limits _{i=1}^{m}\lambda _{i}\left( {\overline{a}} _{i},{\overline{b}}_{i}\right) +\displaystyle \sum \limits _{i=1}^{m}\lambda _{i}r_{i}\left( 1+\epsilon \right) {{\mathbb {B}}}_{n+1}. \end{array} \end{aligned}$$

So, the solution set of any perturbed system obtained from \(\sigma _{r}^{ {{\mathcal {B}}}}\) by summing up vectors of Euclidean norm less than \(\gamma \epsilon \) to each the coefficient vector contains \(F_{r}({\overline{A}}, {\overline{b}})\ne \emptyset .\) In particular, summing up vectors of Chebyshev norm less than \(\frac{\gamma \epsilon }{\sqrt{m}}\) to each coefficient vector of \(\sigma _{r}^{{{\mathcal {B}}}}\) we get a feasible perturbed system. Hence, by [11, Theorem 6.1], \(\sigma _{r}^{\mathcal { B}}\) has a strong Slater solution, which shows that \(\sigma _{r}^{{{\mathcal {B}}} }\) satisfies the Slater condition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goberna, M.A., Jeyakumar, V. & Li, G. Calculating Radius of Robust Feasibility of Uncertain Linear Conic Programs via Semi-definite Programs. J Optim Theory Appl 189, 597–622 (2021). https://doi.org/10.1007/s10957-021-01846-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01846-7

Keywords