Abstract
This work considers nonconvex mixed integer nonlinear programming where nonlinearity comes from the presence of the two-dimensional euclidean norm in the objective or the constraints. We build from the euclidean norm piecewise linearization proposed by Camino et al. (Comput. Optim. Appl. https://doi.org/10.1007/s10589-019-00083-z, 2019) that allows to solve such nonconvex problems via mixed-integer linear programming with an arbitrary approximation guarantee. Theoretical results are established that prove that this linearization is able to satisfy any given approximation level with the minimum number of pieces. An extension of the piecewise linearization approach is proposed. It shares the same theoretical properties for elliptic constraints and/or objective. An application shows the practical appeal of the elliptic linearization on a nonconvex beam layout mixed optimization problem coming from an industrial application.
Similar content being viewed by others
Notes
All data and models are available upon request to the corresponding author, A. Duguet.
References
Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manage. Sci. 32(10), 1274–1290 (1986). https://doi.org/10.1287/mnsc.32.10.1274
Borghetti, A., D’Ambrosio, C., Lodi, A., Martello, S.: An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir. IEEE Trans. Power Syst. 23(3), 1115–1124 (2008). https://doi.org/10.1109/TPWRS.2008.926704
Burlacu, R., Geißler, B., Schewe, L.: Solving mixed-integer nonlinear programmes using adaptively refined mixed-integer linear programmes. Optim. Methods Softw. 35(1), 37–64 (2020). https://doi.org/10.1080/10556788.2018.1556661
Camino, J.-T., Mourgues, S., Artigues, C., Houssin, L.: A greedy approach combined with graph coloring for non-uniform beam layouts under antenna constraints in multibeam satellite systems. In: 2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC), pp. 374–381. https://doi.org/10.1109/ASMS-SPSC.2014.6934570
Camino, J.-T., Artigues, C., Houssin, L., Mourgues, S.: Mixed-integer linear programming for multibeam satellite systems design: Application to the beam layout optimization. In: 2016 Annual IEEE Systems Conference (SysCon), pp. 1–6. https://doi.org/10.1109/SYSCON.2016.7490613
Camino, J.-T., Artigues, C., Houssin, L., Mourgues, S.: Linearisation of euclidean norm dependent inequalities applied to multibeam satellites design. Comput. Optim. Appl. (2019). https://doi.org/10.1007/s10589-019-00083-z
Camponogara, E., de Castro, M.P., Plucenio, A., Pagano, D.J.: Compressor scheduling in oil fields. Optim. Eng. 12, 153–174 (2011). https://doi.org/10.1007/s11081-009-9093-3
Czyzyk, J., Mesnier, M.P., Moré, J.J.: The neos server. IEEE J. Comput. Sci. Eng. 5(3), 68–75 (1998)
D’Ambrosio, C., Lodi, A., Martello, S.: Piecewise linear approximation of functions of two variables in MILP models. Oper. Res. Lett. 38(1), 39–46 (2010). https://doi.org/10.1016/j.orl.2009.09.005
Dolan, E.D.: The neos server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory (2001)
Dunham, J.G.: Optimum uniform piecewise linear approximation of planar curves. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(1), 67–75 (1986). https://doi.org/10.1109/TPAMI.1986.4767753
Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 287–314. Springer, New York (2012)
Gropp, W., Moré, J.J.: Optimization environments and the neos server. In: Buhman, M.D., Iserles, A. (eds.) Approximation Theory and Optimization, pp. 167–182. Cambridge University Press, Cambridge (1997)
Hughes, R.B., Anderson, M.R.: Simplexity of the cube. Discret. Math. 158(1), 99–150 (1996). https://doi.org/10.1016/0012-365X(95)00075-8
Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Global Optim. 59, 405–437 (2014). https://doi.org/10.1007/s10898-013-0125-3
Keha, A.B., de Farias, I.R., Nemhauser, G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32(1), 44–48 (2004). https://doi.org/10.1016/S0167-6377(03)00059-2
Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: a computational approach. In: Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence Volume 3: Global Optimization, pp. 153–234. Springer, Berlin, Heidelberg (2009). ISBN 978-3-642-01085-9. https://doi.org/10.1007/978-3-642-01085-9_7
Liberti, L., Maculan, N., Zhang, Y.: Optimal configuration of gamma ray machine radiosurgery units: The sphere covering subproblem. Optim. Lett. 3, 109–121 (2009). https://doi.org/10.1007/s11590-008-0095-4
Liberti, L.S.: Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis, Imperial College London (2004)
Misener, R., Gounaris, C.E., Floudas, C.A.: Global optimization of gas lifting operations: a comparative study of piecewise linear formulations. Ind. Eng. Chem. Res. 48(13), 6098–6104 (2009). https://doi.org/10.1021/ie8012117
Muts, P.: Decomposition methods for mixed-integer nonlinear programming. PhD thesis (2021)
Muts, P., Nowak, I.: Towards multi-tree methods for large-scale global optimization. In: Le Thi, H.A., Le, H.M., PhamDinh, T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, pp. 498–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_50
Ngueveu, S.U.: Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer linear programming-based solution methods. Eur. J. Oper. Res. 275(3), 1058–1071 (2019). https://doi.org/10.1016/j.ejor.2018.11.021
Nowak, I.: Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming. Birkhäuser (2005). https://doi.org/10.1007/3-7643-7374-1
Padberg, M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27(1), 1–5 (2000). https://doi.org/10.1016/S0167-6377(00)00028-6
Rao, S., Tang, M., Hsu, C.-C.: Multiple beam antenna technology for satellite communications payloads. ACES J. 21(3), 1054–4887 (2006). https://doi.org/10.2514/6.2007-3179
Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for bivariate and multivariate functions. J. Optim. Theory Appl. 167, 102–117 (2015). https://doi.org/10.1007/s10957-014-0688-2
Rebennack, S., Kallrath, J.: Continuous piecewise linear delta-approximations for univariate functions: computing minimal breakpoint systems. J. Optim. Theory Appl. 167, 617–643 (2015). https://doi.org/10.1007/s10957-014-0687-3
Rebennack, S., Krasko, V.: Piecewise linear function fitting via mixed-integer linear programming. Inform. J. Comput. 32(2), 507–530 (2020). https://doi.org/10.1287/ijoc.2019.0890
Rosen, J., Pardalos, P.: Global minimization of large-scale constrained concave quadratic problems by separable programming. Math. Program. 34, 163–174 (1986). https://doi.org/10.1007/BF01580581
Rovatti, R., D’Ambrosio, C., Lodi, A., Martello, S.: Optimistic MILP modeling of non-linear optimization problems. Eur. J. Oper. Res. 239(3), 32–45 (2014). https://doi.org/10.1016/j.ejor.2014.03.020
Santoyo-González, A., Cervelló-Pastor, C.: Latency-aware cost optimization of the service infrastructure placement in 5g networks. J. Netw. Comput. Appl. 114, 29–37 (2018). https://doi.org/10.1016/j.jnca.2018.04.007
Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, Dodrecht (1999)
Sherali, H.D., Liberti, L.: Reformulation-linearization technique for global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 3263–3268. Springer, Boston (2009). ISBN 978-0-387-74759-0. https://doi.org/10.1007/978-0-387-74759-0_559
Silva, T.L., Camponogara, E.: A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization. Eur. J. Oper. Res. 232(3), 630–642 (2014). https://doi.org/10.1016/j.ejor.2013.07.040
Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4), 457–478 (1999). https://doi.org/10.1016/S0098-1354(98)00286-5
Smith, W.D.: A lower bound for the simplexity of then-cube via hyperbolic volumes. Eur. J. Comb. 21(1), 131–137 (2000). https://doi.org/10.1006/eujc.1999.0327
Sridhar, S., Linderoth, J., Luedtke, J.: Locally ideal formulations for piecewise linear functions with indicator variables. Oper. Res. Lett. 41(6), 627–632 (2013). https://doi.org/10.1016/j.orl.2013.08.010
Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2007). https://doi.org/10.1007/s11590-007-0065-2
Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. Ser. A 128, 49–72 (2011). https://doi.org/10.1007/s10107-009-0295-4
Zhang, H., Wang, S.: Linearly constrained global optimization via piecewise-linear approximation. J. Comput. Appl. Math. 214(1), 111–120 (2008). https://doi.org/10.1016/j.cam.2007.02.006
Zhou, C., Mazumder, A., Das, A., Basu, K., Matin-Moghaddam, N., Mehrani, S., Sen, A.: Relay node placement under budget constraint. In: Proceedings of the 19th International Conference on Distributed Computing and Networking, pp. 1–11 (2018). https://doi.org/10.1145/3154273.3154302
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Martine Labbé
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Duguet, A., Artigues, C., Houssin, L. et al. Properties, Extensions and Application of Piecewise Linearization for Euclidean Norm Optimization in \(\mathbb {R}^2\). J Optim Theory Appl 195, 418–448 (2022). https://doi.org/10.1007/s10957-022-02083-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-022-02083-2
Keywords
- Mixed integer linear programming
- Mixed integer nonlinear programming
- Euclidean norm linearization
- Approximation guarantee
- Multibeam satellites