Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalized Bernoulli–Laguerre Polynomials: Applications in Coupled Nonlinear System of Variable-Order Fractional PDEs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a general class of coupled nonlinear systems of variable-order fractional partial differential equations (GCNSV-FPDEs) with initial and boundary conditions. We propose a hybrid method based on new generalized Bernoulli–Laguerre polynomials (GB-LPs) for solving GCNSV-FPDEs. The concept of variable-order fractional derivatives (V-FDs) is employed in the Caputo type. We extract the operational matrices (OMs) of classical and V-FDs of GB-LPs. By utilizing GB-LPs, OMs, and the Lagrange multipliers method, we transform the given GCNSV-FPDE into a system of algebraic equations to be solved. The proposed method yields satisfactory results even with a small number of GB-LPs. We provide a full verification of the method’s convergence, and two examples are included to demonstrate its validity and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aizenshtadt, V.S., Krylov, V.I., Metel’skii, A.S.: Tables of Laguerre Polynomials and Functions. Pergamon Press, Oxford-New York (1966)

    Google Scholar 

  2. Barikbin, Z., Keshavarz, E.: Solving fractional optimal control problems by new Bernoulli wavelets operational matrices. Optim. Contr. Appl. Met. 41(4), 1188–1210 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Yu, H., Meng, X., Xie, X., Hou, M., Chevallier, J.: Numerical solving of the generalized Black–Scholes differential equation using Laguerre neural network. Digit. Signal Process. 112, 103003 (2021)

    Article  Google Scholar 

  4. Chi, X., Jiang, X.: Finite difference Laguerre–Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain. Appl. Math. Comput. 402, 126138 (2021)

    MathSciNet  Google Scholar 

  5. Chouhan, D., Mishra, V., Srivastava, H.M.: Bernoulli wavelet method for numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order. Results Appl. Math. 10, 100146 (2021)

    Article  MathSciNet  Google Scholar 

  6. Faheem, M., Raza, A., Khan, A.: Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Math. Comput. Simul. 180, 72–92 (2021)

    Article  MathSciNet  Google Scholar 

  7. Hassani, H., Avazzadeh, Z., Machado, J.A.T.: Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. 36, 867–878 (2020)

    Article  Google Scholar 

  8. Hassani, H., Machado, J.A.T., Avazzadeh, Z.: An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 97, 2041–2054 (2019)

    Article  Google Scholar 

  9. Hassani, H., Tenreiro Machado, J.A., Avazzadeh, Z., Naraghirad, E., Dahaghin, M.Sh.: Generalized Bernoulli polynomials: solving nonlinear 2D fractional optimal control problems. J. Sci. Comput. 83, 30 (2020)

  10. Hassani, H., Tenreiro Machado, J.A., Hosseini Asl, M.K., Dahaghin, M.Sh.: Numerical solution of nonlinear fractional optimal control problems using generalized Bernoulli polynomials. Optim. Contr. Appl. Met. 42(4), 1045–1063 (2021)

  11. Heydari, M.H., Avazzadeh, Z.: New formulation of the orthonormal Bernoulli polynomials for solving the variable-order time fractional coupled Boussinesq-Burger’s equations. Eng. Comput. 37, 3509–3517 (2021)

    Article  Google Scholar 

  12. Heydari, M.H., Razzaghi, M., Avazzadeh, Z.: Orthonormal Bernoulli polynomials for space–time fractal-fractional modified Benjamin–Bona–Mahony type equations. Eng. Comput. 38, 3483–3496 (2022)

    Article  Google Scholar 

  13. Hosseininia, M., Heydari, M.H., Avazzadeh, Z., Maalek Ghaini, F.M.: A hybrid method based on the orthogonal Bernoulli polynomials and radial basis functions for variable order fractional reaction–advection–diffusion equation. Eng. Anal. Bound. Elem. 127, 18–28 (2021)

    Article  MathSciNet  Google Scholar 

  14. Ji, T., Hou, J.: Numerical solution of the Bagley–Torvik equation using Laguerre polynomials. SeMA 77, 97–106 (2020)

    Article  MathSciNet  Google Scholar 

  15. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  16. Khajehnasiri, A.A., Ezzati, R., Afshar Kermani, M.: Solving fractional two-dimensional nonlinear partial Volterra integral equation by using Bernoulli wavelet. Iran. J. Sci. Technol. Trans. Sci. 45, 983–995 (2021)

    Article  MathSciNet  Google Scholar 

  17. Kreyszig, E.: Introductory Functional Analysis with Applications. John Wiley and Sons. Inc. (1978)

  18. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3(3), 249–265 (2000)

    MathSciNet  Google Scholar 

  19. Mohammadi, F., Hassani, H.: Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. J. Optim. Theory Appl. 180, 536–555 (2019)

    Article  MathSciNet  Google Scholar 

  20. Postavaru, O., Toma, A.: A numerical approach based on fractional-order hybrid functions of block-pulse and Bernoulli polynomials for numerical solutions of fractional optimal control problems. Math. Comput. Simul. 194, 269–284 (2022)

    Article  MathSciNet  Google Scholar 

  21. Rabiei, K., Ordokhani, Y., Babolian, E.: Numerical solution of 1D and 2D fractional optimal control of system via Bernoulli polynomials. Int. J. Appl. Comput. Math. 4, 7 (2018)

    Article  MathSciNet  Google Scholar 

  22. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algor. 74, 223–245 (2017)

    Article  MathSciNet  Google Scholar 

  23. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Appl. Numer. Math. 122, 66–81 (2017)

    Article  MathSciNet  Google Scholar 

  24. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Appl. Numer. Math. 309, 493–510 (2017)

    MathSciNet  Google Scholar 

  25. Ren, Q., Tian, H.: Numerical solution of the static beam problem by Bernoulli collocation method. Appl. Math. Model. 40(21–22), 8886–8897 (2016)

    Article  MathSciNet  Google Scholar 

  26. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    Google Scholar 

  27. Sahu, P.K., Mallick, B.: Approximate solution of fractional order Lane–Emden type differential equation by orthonormal Bernoulli’s polynomials. Int. J. Appl. Comput. Math. 5, 89 (2019)

    Article  MathSciNet  Google Scholar 

  28. Samadyar, N., Mirzaee, F.: Numerical scheme for solving singular fractional partial integro-differential equation via orthonormal Bernoulli polynomials. Int. J. Numer. Model. El. 32(6), e2652 (2019)

    Article  Google Scholar 

  29. Shahni, J., Singh, R.: Laguerre wavelet method for solving Thomas–Fermi type equations. Eng. Comput. 38(4), 2925–2935 (2021)

    Article  Google Scholar 

  30. Singh, S., Patel, V.K., Singh, V.K., Tohidi, E.: Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions. Comput. Math. Appl. 75(7), 2280–2294 (2018)

    Article  MathSciNet  Google Scholar 

  31. Soltanpour Moghadam, A., Arabameri, M., Baleanu, D., Barfeie, M.: Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative. Math. Methods Appl. Sci. 43(7), 3936–3953 (2020)

    MathSciNet  Google Scholar 

  32. Sun, H., Chen, W., Wei, H., Chen, Y.Q.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)

    Article  Google Scholar 

  33. Tang, Z., Tohidi, E., He, F.: Generalized mapped nodal Laguerre spectral collocation method for Volterra delay integro-differential equations with noncompact kernels. Comput. Appl. Math. 39, 298 (2020)

    Article  MathSciNet  Google Scholar 

  34. Yu, H., Wu, B., Zhang, D.: The Laguerre–Hermite spectral methods for the time-fractional sub-diffusion equations on unbounded domains. Numer. Algor. 82, 1221–1250 (2019)

    Article  MathSciNet  Google Scholar 

  35. Yu, X., Ye, X., Wang, Z.: A fast solver of Legendre–Laguerre spectral element method for the Camassa–Holm equation. Numer. Algor. 88, 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  36. Zhang, B., Tang, Y., Zhang, X.: A new method for solving variable coefficients fractional differential equations based on a hybrid of Bernoulli polynomials and block pulse functions. Math. Methods Appl. Sci. 46(7), 8054–8073 (2023)

    Article  MathSciNet  Google Scholar 

  37. Zhang, B., Tang, Y., Zhang, X.: Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions. Math. Sci. 15, 293–304 (2021)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Z., Yong, Y.: Valuing guaranteed equity-linked contracts by Laguerre series expansion. J. Comput. Appl. Math. 357, 329–348 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zeghdane, R.: Numerical solution of stochastic integral equations by using Bernoulli operational matrix. Math. Comput. Simul. 165, 238–254 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hassani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Stefan Ulbrich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, H., Avazzadeh, Z., Agarwal, P. et al. Generalized Bernoulli–Laguerre Polynomials: Applications in Coupled Nonlinear System of Variable-Order Fractional PDEs. J Optim Theory Appl 200, 371–393 (2024). https://doi.org/10.1007/s10957-023-02346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02346-6

Keywords

Mathematics Subject Classification