Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thermal conductivity enhancement of Ag nanowires on an organic phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the greatest challenges in the application of organic phase change materials (PCMs) is to increase their thermal conductivity while maintaining high phase change enthalpy. 1-Tetradecanol/Ag nanowires composite PCM containing 62.73 wt% (about 11.8 vol%) of Ag nanowires showed remarkably high thermal conductivity (1.46 W m−1 K−1) and reasonably high phase change enthalpy (76.5 J g−1). This behavior was attributed to the high aspect ratio of Ag nanowires, few thermal conduct interfaces, and high interface thermal conductivity of Ag nanowires in the composite PCM. These results indicated that Ag nanowires might be strong candidates for thermal conductivity enhancement of organic PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasnain SM. Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manag. 1998;39:1127–38.

    Article  CAS  Google Scholar 

  2. Alkan C, Kaya K, Sarı A. Preparation and thermal properties of ethylene glycole distearate as a novel phase change material for energy storage. Mater Lett. 2008;62:1122–5.

    Article  CAS  Google Scholar 

  3. Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  4. Tong B, Tan ZC, Lv XC, Sun LX, Xu F, Shi Q, et al. Low-temperature heat capacities and thermodynamic properties of 2,2-dimethyl-1,3-propanediol. J Therm Anal Calorim. 2007;90:217–21.

    Article  CAS  Google Scholar 

  5. Alvarado JL, Marsh C, Sohn C, Vilceus M, Hock V, Phetteplace G, et al. Characterization of supercooling suppression of microencapsulated phase change material by using DSC. J Therm Anal Calorim. 2006;86:505–9.

    Article  CAS  Google Scholar 

  6. Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94:1571–86.

    Article  CAS  Google Scholar 

  7. Wirtz R, Zhao T, Jiang Y. Thermal and mechanical characteristics of a multi-functional thermal energy storage structure. In: The Ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems, 2004 (ITHERM’04). 2004. p. 549–56.

  8. Stritih U. Heat transfer enhancement in latent heat thermal storage system for buildings. Energy Build. 2003;35:1097–104.

    Article  Google Scholar 

  9. Frusteri F, Leonardi V, Vasta S, Restuccia G. Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng. 2005;25:1623–33.

    Article  CAS  Google Scholar 

  10. Nakaso K, Teshima H, Yoshimura A, Nogami S, Hamada Y, Fukai J. Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks. Chem Eng Process. 2008;47:879–85.

    Article  CAS  Google Scholar 

  11. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;95:507–12.

    Article  CAS  Google Scholar 

  12. Zeng JL, Liu YY, Cao ZX, Zhang J, Zhang ZH, Sun LX, et al. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM. J Therm Anal Calorim. 2008;91:443–6.

    Article  CAS  Google Scholar 

  13. Xiao M, Feng B, Gong K. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag. 2002;43:103–8.

    Article  CAS  Google Scholar 

  14. Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J Heat Mass Transf. 2001;44:2727–37.

    Article  CAS  Google Scholar 

  15. Hong ST, Herling DR. Open-cell aluminum foams filled with phase change materials as compact heat sinks. Scr Mater. 2006;55:887–90.

    Article  CAS  Google Scholar 

  16. Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl Therm Eng. 2006;26:1652–61.

    Article  CAS  Google Scholar 

  17. Andreescu A, Savin A, Steigmann R, Iftimie N, Mamut E, Grimberg R. Model for thermal conductivity of composites with carbon nanotubes. J Therm Anal Calorim. 2008;94:349–53.

    Article  CAS  Google Scholar 

  18. Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2:731–4.

    Article  CAS  Google Scholar 

  19. Lia C, Yang XG, Yang BJ, Yan Y, Qian YT. A template-free oxide reduction route to silver nanowires. Mater Lett. 2005;59:1409–12.

    Article  Google Scholar 

  20. Han YP, Ye H, Wu WZ, Shi G. Fabrication of Ag and Cu nanowires by a solid-state ionic method and investigation of their third-order nonlinear optical properties. Mater Lett. 2008;62:2806–9.

    Article  CAS  Google Scholar 

  21. Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater. 2002;14:833–7.

    Article  CAS  Google Scholar 

  22. Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy Build. 2006;38:1262–9.

    Article  Google Scholar 

  23. Zou GL, Lan XZ, Tan ZC, Sun LX, Zhang T. Microencapsulation of n-hexadecane as a phase change material in polyurea. Acta Phys Chim Sin. 2004;20:90–3.

    Google Scholar 

  24. Weidenfeller B, Höfer M, Schilling FR. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites. 2004;35:423–9.

    Article  Google Scholar 

  25. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV. Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J. 2002;38:1887–97.

    Article  CAS  Google Scholar 

  26. Boudennea A, Ibos L, Fois M, Majesté JC, Géhin E. Electrical and thermal behavior of polypropylene filled with copper particles. Composites. 2005;36:1545–54.

    Article  Google Scholar 

  27. Tekce HS, Kumlutas D, Tavman IH. Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J Reinf Plast Compos. 2007;26:113–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China [Nos. 20833009, 50671098,U0734005 and 20775010], 863 projects (2007AA05Z115 and 2007AA05Z102), and Changsha University of Science and Technology is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. L. Zeng or L. X. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, J.L., Cao, Z., Yang, D.W. et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101, 385–389 (2010). https://doi.org/10.1007/s10973-009-0472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0472-y

Keywords