Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrle RF, Carroll JR (1988) The atlas of breeding birds in New York State. Cornell University Press, Ithaka

    Google Scholar 

  • Askins RA, Chavez-Ramirez F, Dale BC, Haas CA, Herkert JR, Knopf FL, Vickery PD (2007) Conservation of grassland birds in North America: understanding ecological processes in different regions. Ornithol Monogr 64:1–46

    Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial datasets. J R Stat Soc B 70:825–848

    Article  Google Scholar 

  • Barnagaud J-Y, Barbaro L, Hampe A, Jiguet F, Archaux F (2013) Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography 36:1218–1226

    Article  Google Scholar 

  • Barnagaud JY, Barbaro L, Papaix J, Deconchat M, Brockerhoff EG (2014) Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds. Ecology 95(1):78–87

    Article  PubMed  Google Scholar 

  • Barnagaud J-Y, Devictor V, Jiguet F, Barbet-Massin M, Le Viol I, Archaux F (2012) Relating habitat and climatic niches in birds. PLoS One 7(3):e32819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JM, Nimmo DG, Clarke RH, Thomson JR, Cheers G, Horrocks GFB, Hall M, Radford JQ, Bennettm AF, Mac Nally R (2014) Resistance and resilience: can the abrupt end of extreme drought reverse avifaunal collapse? Divers Distrib 20(11):1321–1332

    Article  Google Scholar 

  • Beyer HL (2013) Geospatial modelling environment. http://www.spatialecology.com/gme/. Accessed Oct 2013.

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Brennan LA, Kuvlesky WP (2005) North American grassland birds: an unfolding conservation crisis? J Wildl Manag 69:1–13

    Article  Google Scholar 

  • Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensititvity of alpine birds to potential future changes in habitat and climate to inform management startegies. Biol Conserv 167:127–135

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49(4):288–297

    Article  Google Scholar 

  • Clavero M, Villero D, Brotons L (2011) Climate change or land use dynamics: Do we know what climate change indicators indicate? PLoS One 6(4):e18581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox WA, Thompson FR III, Reidy J, Faaborg J (2013) Temperature can interact with landscape factors to affect songbird productivity. Glob Chang Biol 19:1064–1074

    Article  PubMed  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, Hoboken

    Google Scholar 

  • Daly C, Gibson W (2002) Parameter-estimation on Independent Slopes Model (PRISM). The PRISM Climate Group, Oregon. ftp://ncdc.noaa.gov/pub/data/prism100. Accessed Jan 2011

  • De Frenne P, Rodríguez-Sánchez F, Coomes DA, Baeten L, Verstraeten G, Vellend M, Bernhardt-Römermann M, Brown CD, Brunet J, Cornelis J, Decocq GM, Dierschke H, Eriksson O, Gilliam FS, Hedl R, Heinken T, Hermy M, Hommel P, Jenkins MA, Kelly DL, Kirby KJ, Mitchell FJG, Naaf T, Newman M, Peterken G, Petrik P, Schultz J, Sonnier G, Calster HV, Waller DM, Walther G-R, White PS, Woods KD, Wulf M, Graae BJ, Verheyen K (2013) Microclimate moderates plant responses to macroclimate warming. Proc R Soc B Biol Sci 110(46):18561–18565

    Google Scholar 

  • DeGraaf RM, Yamasaki M (2001) New England wildlife; habitat, natural history, and distribution. University Press of New England, Hanover

    Google Scholar 

  • Dobrowski SZ, Swanson AK, Abatzoglou JT, Holden ZA, Safford HD, Schwartz MK, Gavin DG (2015) Forest structure and species traits mediate projected recruitment declines in western US tree species. Glob Ecol Biogeogr 24(8):917–927

    Article  Google Scholar 

  • Finley AO, Banerjee S, Gelfand AE (2015) spBayes for large univariate and multivariate point-referenced spatio-temporal data models. J Stat Softw 63(13):1–28

    Article  Google Scholar 

  • Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2009) Completion of the National Land Cover Database (NLCD) 1992–2001 land cover change retrofit product: U.S. Geological Survey Open-File Report 2008–1379

  • Fuller RJ, Gregory RD, Gibbons DW, Marchant JH, Wilson JD, Baillie SR, Carter N (1995) Population declines and range contractions among lowland farmland birds in Britain. Conserv Biol 9(6):1425–1441

    Article  Google Scholar 

  • Gaublomme E, Eggermont H, Hendrickx F (2014) Local extinction processes rather than edge effects affect ground beetle assemblages from fragmented and urbanised old beech forests. Insect Conserv Divers 7:82–90

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield Publishing Group, Lanham

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

    Article  Google Scholar 

  • Gibbons DW, Donald PF, Bauer HG, Fornasari L, Dawson IK (2007) Mapping avian distributions: the evolution of bird atlases. Bird Study 54:324–334

    Article  Google Scholar 

  • Griffen BD, Drake JM (2008) A review of extinction in experimental populations. J Anim Ecol 77:1274–1287

    Article  PubMed  Google Scholar 

  • Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes. Bioscience 51(9):765–779

    Article  Google Scholar 

  • Helzer CJ, Jelinski DE (1999) The relative importance of patch area and perimeter-area ratio to grassland breeding birds. Ecol Appl 9(4):1448–1458

    Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national landcover database for the United States. Photogramm Eng Remote Sens 70(7):829–840

    Article  Google Scholar 

  • Jarzyna MA, Porter WF, Maurer BA, Zuckerberg B, Finley AO (2015) Landscape fragmentation affects responses of avian communities to climate change. Glob Chang Biol 21(8):2942–2953

    Article  PubMed  Google Scholar 

  • Jarzyna MA, Zuckerberg B, Porter WF (2013) Climate change and wildlife. In: Krausman PR, Cain JW III (eds) Wildlife management and conservation: contemporary principles and practices. Johns Hopkins University Press, Baltimore, pp 262–278

    Google Scholar 

  • Jeltsch F, Moloney KA, Schwager M, Körner K, Blaum N (2011) Consequences of correlations between habitat modifications and negative impact of climate change for regional species survival. Agric Ecosyst Environ 145:49–58

    Article  Google Scholar 

  • Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, Lindström A (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc B 277:3601–3608

    Article  PubMed  PubMed Central  Google Scholar 

  • Kampichler C, van Turnhout CAM, Devictor V, van der Jeugd HP (2012) Large-scale changes in community composition: determining land use and climate change signals. PLoS One 7(4):e35272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152(3):475–486

    Article  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. Ann N Y Acad Sci 1162:79–98

    Article  PubMed  Google Scholar 

  • Lawler JJ, Ackerly DD, Albano CM, Anderson MG, Dobrowski SZ, Gill JL, Heller NE, Pressey RL, Sanderson EW, Weiss SB (2015) The theory behind, and the challenges of conserving nature’s stage in a time of rapid change. Conserv Biol 29(3):618–629

    Article  PubMed  Google Scholar 

  • Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. PNAS 111(20):7492–7497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinuzzi S, Withey JC, Pidgeon AM, Plantinga AJ, McKerrow AJ, Williams S, Helmers DP, Radeloff VC (2015) Future land-use scenarios and the loss of wildlife habitats in the southeastern United States. Ecol Appl 25(1):160–171

    Article  PubMed  Google Scholar 

  • McCarthy MA, Thompson CJ, Possingham HP (2005) Theory for designing nature reserves for single species. Am Nat 165(2):250–257

    Article  PubMed  Google Scholar 

  • McDonald KW, McClure CJW, Rolek BW, Hill GE (2012) Diversity of birds in eastern North America shifts north with global warming. Ecol Evol 2:3052–3060

    Article  PubMed  PubMed Central  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012). FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed Oct 2013

  • McGowan M, Corwin K (2008) The Second Atlas of breeding birds in New York State. Cornell University Press, Ithaka

    Google Scholar 

  • Moss R, Oswald J, Baines D (2001) Climate change and breeding success: decline of the capercaillie in Scotland. J Anim Ecol 70:47–61

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Nuñez TA, Lawler JJ, McRae BH, Pierce DJ, Krosby MB, Kavanagh DM, Singleton PH, Tewksbury JJ (2013) Connectivity planning to address climate change. Conserv Biol 27(2):407–416

    Article  PubMed  Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Pacifici AM, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akcakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffman AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pomara LY, LeDee OE, Martin KJ, Zuckerberg B (2014) Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob Chang Biol 20:2087–2099

    Article  PubMed  Google Scholar 

  • Reif J (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48(1):1–16

    Article  Google Scholar 

  • Ribic CA, Koford RR, Herkert JR, Johnson DH, Niemuth ND, Naugle DE, Bakker KK, Sample DW, Renfrew RB (2009) Area sensitivity in North American grassland birds: patterns and processes. Auk 126(2):233–244

    Article  Google Scholar 

  • Runge CA, Tulloch A, Hammill E, Possingham HP, Fuller RA (2015) Geographic range size and extinction risk assessment in nomadic species. Conserv Biol 29(3):865–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc B 64:583–639

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreire de Sququeira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tingley MW, Estes LD, Wilcove DS (2013) Climate change must not blow conservation off course. Nature 500:271–272

    Article  CAS  PubMed  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473

    Article  CAS  Google Scholar 

  • Vickery PD, Dunwiddie PW (1997) Introduction. In: Vickery PD, Dunwiddie PW (eds) Grasslands of Northeastern North America. Massachusetts Audubon Society, Lincoln, pp 1–13

    Google Scholar 

  • Vickery PD, Zuckerberg B, Jones AL, Shriver WG, Weik AP (2005) Influence of fire and other anthropogenic practices on grassland and shrubland birds in New England. In: Saab VA, Powell HDW (eds.) Fire and Avian Ecology in North America. Studies in Avian Biology, No 30, pp. 139–146

  • Villegas JC, Breshears DD, Zou CB, Royer PD (2010) Seasonally pulsed heterogeneity in microclimate: phenology and cover effects along deciduous grassland–forest continuum. Vadose Zone J 9(3):537–547

    Article  Google Scholar 

  • Virkkala R, Heikkinen RK, Lehikoinen A, Valkama J (2014) Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biol Conserv 172:124–127

    Article  Google Scholar 

  • Von Arx G, Pannatier E, Thimonier A, Rebetez M (2013) Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101:1201–1213

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wickham JD, Wade TG, Ritters KH (2012) Empirical analysis of the influence of forest extent on annual and seasonal surface temperatures for the continental United States. Glob Ecol Biogeogr 22(5):620–629

    Article  Google Scholar 

  • Winter M, Johnson DH, Shaffer JA, Donovan TM, Svedarsky WD (2006) Patch size and landscape effects on density and nesting success of grassland birds. J Wildl Manag 70(1):157–172

    Article  Google Scholar 

  • Zuckerberg B, Porter WF, Corwin K (2009) The consistency and stability of abundance-occupancy relationships in large-scale population dynamics. J Anim Ecol 78:172–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the volunteers who participated in both New York State Breeding Bird Atlases. We also thank Kimberley Corwin and Kevin McGowan for supplying atlas databases and Colin M. Beier, Daniel Bishop, and John Wiley for supplying climate data. The manuscript benefited from discussions with members of the Boone and Crockett Quantitative Wildlife Center at Michigan State University. We thank two anonymous reviewers for valuable comments on the earlier drafts of this manuscript. This study received financial support from NASA Grant NNXO9AK16G and Boone and Crockett Club. Andrew O. Finley was supported by the National Science Foundation (NSF) grants DMS-1513481, EF-1137309, EF-1241874, and EF-1253225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta A. Jarzyna.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarzyna, M.A., Zuckerberg, B., Finley, A.O. et al. Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landscape Ecol 31, 2275–2290 (2016). https://doi.org/10.1007/s10980-016-0399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0399-1

Keywords