Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

For a fixed integer n ≥ 2, let X 1 ,…, X n be independent random variables (r.v.s) with distributions F 1,…,F n , respectively. Let Y be another random variable with distribution G belonging to the intersection of the longtailed distribution class and the O-subexponential distribution class. When each tail of F i , i = 1,…,n, is asymptotically less than or equal to the tail of G, we derive asymptotic lower and upper bounds for the ratio of the tail probabilities of the sum X 1 + ⋯ + X n and Y. By taking different G’s, we obtain general forms of some existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.

    MATH  Google Scholar 

  2. V.P. Chistyakov, A theorem on sums of independent positive random variables and its applications to branching processes, Theory Probab. Appl., 9:640–648, 1964.

    Article  Google Scholar 

  3. D.B.H. Cline, Convolution tails, product tails and domains of attraction, Probab. Theory Relat. Fields, 72:529–557, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.B.H. Cline, Convolutions of distributions with exponential and subexponential tails, J. Aust. Math. Soc., Ser. A, 43:347–365, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Embrechts and C.M. Goldie, On closure and factorization properties of subexponential tails, J. Aust. Math. Soc., Ser. A, 29:243–256, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Geluk, Some closure properties for subexponential distributions, Stat. Probab. Lett., 79:1108–1111, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Klüppelberg, Asymptotic ruin probabilities and hazard rates, Math. Oper. Res., 60:567–576, 1990.

    Google Scholar 

  8. J.R. Leslie, On the nonclosure under convolution of the subexponential family, J. Appl. Probab., 26:58–66, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Li and Q. Tang, A note on max-sum equivalence, Stat. Probab. Lett., 80:1720–1723, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Lin and Y. Wang, New examples of heavy-tailed O-subexponential distributions and related closure properties, Stat. Probab. Lett., 82:427–432, 2012.

    Article  Google Scholar 

  11. A. Pakes, Convolution equivalence and infinite divisibility, J. Appl. Probab., 41:407–424, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  12. E.J.G. Pitman, Subexponential distribution functions, J. Aust. Math. Soc., Ser. A, 29:337–347, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Shimura and T. Watanabe, Infinite divisibility and generalized subexponentiality, Bernoulli, 11:445–469, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Watanabe and K. Yamamura, Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure, Electron. J. Probab., 15:44–74, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Yu and Y. Wang, The tail behavior of the supremum of a random walk when Cramér’s condition fails, 2011 (submitted for publication).

  16. C. Yu, Y. Wang, and Z. Cui, Lower limits and upper limits for tails of random sums supported on R, Stat. Probab. Lett., 80:1111–1120, 2010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuebao Wang.

Additional information

Research supported by the National Science Foundation of China (No. 11071182).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, D., Wang, Y. Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables. Lith Math J 52, 29–39 (2012). https://doi.org/10.1007/s10986-012-9153-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-012-9153-9

Keywords