Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrable (2k)-Dimensional Hitchin Equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

This letter describes a completely integrable system of Yang–Mills–Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang–Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg–Witten equations. Some simple solutions in the k =  2 case are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Drinfeld V.G., Hitchin N.J., Manin Y.I.: Construction of instantons. Phys. Lett. A. 65, 185–187 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Baulieu L., Kanno H., Singer I.M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. 194, 149–175 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cherkis S.A.: Octonions, monopoles, and knots. Lett. Math. Phys. 105, 641–659 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Corrigan E., Devchand C., Fairlie D.B., Nuyts J.: First-order equations for gauge fields in spaces of dimension greater than four. Nucl. Phys. B 214, 452–464 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. Corrigan E., Goddard P., Kent A.: Some comments on the ADHM construction in 4k dimensions. Commun. Math. Phys. 100, 1–13 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: Huggett, S.A., et al. (eds.) The Geometric Universe, pp. 31–47. Oxford University Press, Oxford (1998)

  7. Dunajski M., Hoegner M.: SU(2) solutions to self-duality equations in eight dimensions. J. Geom. Phys. 62, 1747–1759 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gagliardo M., Uhlenbeck K.: Geometric aspects of the Kapustin Witten equations. J. Fixed Point Theory Appl. 11, 185–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaiotto D., Moore G.W., Neitzke A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harland D., Ward R.S.: Dynamics of periodic monopoles. Phys. Lett. B. 675, 262–266 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Haydys A.: Gauge theory, calibrated geometry and harmonic spinors. J. Lond. Math. Soc. 86, 482–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kapustin A., Witten E.: Electromagnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lohe M.A.: Two- and three-dimensional instantons. Phys. Lett. B 70, 325–328 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mamone Capria M., Salamon S.M.: Yang–Mills fields on quaternionic spaces. Nonlinearity 1, 517–530 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Papadopoulos G., Teschendorff A: Instantons at angles. Phys. Lett. B 419, 115–122 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Salamon, S.M.: Quaternionic structures and twistor spaces. In: Willmore, T.J., Hitchin, N. (eds.) Global Riemannian Geometry, pp. 65–74. Ellis Horwood, Chichester (1984)

  18. Simpson C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tanaka, Y.: On the singular sets of solutions to the Kapustin–Witten equations on compact Kähler surfaces. (2015). ArXiv e-prints, arXiv:1510.07739

  20. Ward R.S.: Completely-solvable gauge-field equations in dimension greater than four. Nucl. Phys. B 236, 381–396 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ward R.S.: Geometry of solutions of Hitchin equations on \({{{\mathbb{R} }}^{2}}\). Nonlinearity 29, 756–765 (2016)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Ward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, R.S. Integrable (2k)-Dimensional Hitchin Equations. Lett Math Phys 106, 951–958 (2016). https://doi.org/10.1007/s11005-016-0849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0849-3

Mathematics Subject Classification

Keywords