Abstract
This letter describes a completely integrable system of Yang–Mills–Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang–Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg–Witten equations. Some simple solutions in the k = 2 case are described.
Similar content being viewed by others
References
Atiyah M.F., Drinfeld V.G., Hitchin N.J., Manin Y.I.: Construction of instantons. Phys. Lett. A. 65, 185–187 (1978)
Baulieu L., Kanno H., Singer I.M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. 194, 149–175 (1998)
Cherkis S.A.: Octonions, monopoles, and knots. Lett. Math. Phys. 105, 641–659 (2015)
Corrigan E., Devchand C., Fairlie D.B., Nuyts J.: First-order equations for gauge fields in spaces of dimension greater than four. Nucl. Phys. B 214, 452–464 (1983)
Corrigan E., Goddard P., Kent A.: Some comments on the ADHM construction in 4k dimensions. Commun. Math. Phys. 100, 1–13 (1985)
Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: Huggett, S.A., et al. (eds.) The Geometric Universe, pp. 31–47. Oxford University Press, Oxford (1998)
Dunajski M., Hoegner M.: SU(2) solutions to self-duality equations in eight dimensions. J. Geom. Phys. 62, 1747–1759 (2012)
Gagliardo M., Uhlenbeck K.: Geometric aspects of the Kapustin Witten equations. J. Fixed Point Theory Appl. 11, 185–198 (2012)
Gaiotto D., Moore G.W., Neitzke A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013)
Harland D., Ward R.S.: Dynamics of periodic monopoles. Phys. Lett. B. 675, 262–266 (2009)
Haydys A.: Gauge theory, calibrated geometry and harmonic spinors. J. Lond. Math. Soc. 86, 482–498 (2012)
Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)
Kapustin A., Witten E.: Electromagnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007)
Lohe M.A.: Two- and three-dimensional instantons. Phys. Lett. B 70, 325–328 (1977)
Mamone Capria M., Salamon S.M.: Yang–Mills fields on quaternionic spaces. Nonlinearity 1, 517–530 (1988)
Papadopoulos G., Teschendorff A: Instantons at angles. Phys. Lett. B 419, 115–122 (1998)
Salamon, S.M.: Quaternionic structures and twistor spaces. In: Willmore, T.J., Hitchin, N. (eds.) Global Riemannian Geometry, pp. 65–74. Ellis Horwood, Chichester (1984)
Simpson C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1, 867–918 (1988)
Tanaka, Y.: On the singular sets of solutions to the Kapustin–Witten equations on compact Kähler surfaces. (2015). ArXiv e-prints, arXiv:1510.07739
Ward R.S.: Completely-solvable gauge-field equations in dimension greater than four. Nucl. Phys. B 236, 381–396 (1984)
Ward R.S.: Geometry of solutions of Hitchin equations on \({{{\mathbb{R} }}^{2}}\). Nonlinearity 29, 756–765 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ward, R.S. Integrable (2k)-Dimensional Hitchin Equations. Lett Math Phys 106, 951–958 (2016). https://doi.org/10.1007/s11005-016-0849-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-016-0849-3