Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salvia miltiorrhiza Bunge is a well-known material of traditional Chinese medicine. Hydrophilic phenolic acids, such as rosmarinic acid and salvianolic acid B, are a group of pharmaceutically important compounds in S. miltiorrhiza. The biosynthesis of rosmarinic acid requires the coordination of the phenylpropanoid pathway and the tyrosine-derived pathway. Phenylalanine ammonia-lyase (PAL) is the first key enzyme of the phenylpropanoid pathway. Systematic analysis of the SmPAL gene family has not been carried out. We report here the identification of three SmPALs through searching the recently obtained working draft of the S. miltiorrhiza genome and full-length cDNA cloning. Bioinformatic and phylogenetic analyses showed that SmPAL1 and SmPAL3 clustered in a sub-clade of dicot PALs, whereas SmPAL2 fell into the other one. Some important cis-elements were conserved in three SmPAL promoters, whereas the others were not. SmPAL1 and SmPAL3 were highly expressed in roots and leaves of S. miltiorrhiza, but SmPAL2 were predominately expressed in stems and flowers. It indicates that SmPAL1 and SmPAL3 function redundantly in rosmarinic acid biosynthesis. All SmPALs were induced in roots treated with PEG and MeJA, but the time and degree of responses were different, suggesting the complexity of SmPAL-associated metabolic network in S. miltiorrhiza. This is the first comprehensive study dedicated to SmPAL gene family characterization. The results provide a basis for elucidating the role of SmPAL genes in the biosynthesis of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4CL:

4-Coumarate:CoA ligase

C4H:

Cinnamic acid 4-hydroxylase

HPPD:

Hydroxyphenylpyruvate dioxygenase

HPPR:

Hydroxyphenylpyruvate reductase

MeJA:

Methyl jasmonate

MW:

Molecular weight

ORF:

Open reading frame

PAL:

Phenylalanine ammonia-lyase

PCR:

Polymerase chain reactions

pI :

Isoelectric point

qRT-PCR:

Quantitative real-time polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

RAS:

Rosmarinic acid synthase

TAT:

Tyrosine aminotransferase

TCM:

Traditional Chinese medicine

References

  1. Cheng TO (2006) Danshen: a popular Chinese cardiac herbal drug. J Am Coll Cardiol 47:1498

    Article  PubMed  Google Scholar 

  2. Wang XH, Morris-Natschke SL, Lee KH (2007) Developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148

    Article  PubMed  Google Scholar 

  3. Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692–2698

    PubMed  CAS  Google Scholar 

  4. Abell CW, Stith WJ, Hodgins DS (1972) The effects of phenylalanine ammonia-lyase on leukemic lymphocytes in vitro. Cancer Res 32:285–290

    PubMed  CAS  Google Scholar 

  5. Hyun MW, Yun YH, Kim JY, Kim SH (2011) Fungal and plant phenylalanine ammonia-lyase. Mycobiology 39:257–265

    Article  PubMed  CAS  Google Scholar 

  6. Hamilton BK, Hsiao HY, Swann WE, Anderson DM, Delent JJ (1985) Manufacture of l-amino acids with bioreactors. Trends Biotechnol 3:64–68

    Article  CAS  Google Scholar 

  7. Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  PubMed  CAS  Google Scholar 

  8. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  9. Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and promoter sequence motifs of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  PubMed  CAS  Google Scholar 

  10. Shi R, Yang C, Lu S, Sederoff R, Chiang VL (2010) Specific downregulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288

    Article  PubMed  CAS  Google Scholar 

  11. Xu H, Park NI, Li X, Kim YK, Lee SY, Park SU (2010) Molecular cloning and characterization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis. Bioresour Technol 101:9715–9722

    Article  PubMed  CAS  Google Scholar 

  12. Shang QM, Li L, Dong CJ (2012) Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus. Planta 236:1093–1105

    Article  PubMed  CAS  Google Scholar 

  13. Lepelley M, Mahesh V, McCarthy J, Rigoreau M, Crouzillat D, Chabrillange N, de Kochko A, Campa C (2012) Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae). Planta 236:313–326

    Article  PubMed  CAS  Google Scholar 

  14. Kao YY, Harding SA, Tsai CJ (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796–807

    Article  PubMed  Google Scholar 

  15. Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

    Article  PubMed  CAS  Google Scholar 

  16. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  17. Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15:529–539

    Article  PubMed  CAS  Google Scholar 

  18. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  20. Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics 13:15

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  22. Hu YS, Zhang L, Di P, Chen WS (2009) Cloning and induction of phenylalanine ammonia-lyase gene from Salvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med 7:0449–0457

    Article  CAS  Google Scholar 

  23. Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952

    Article  PubMed  CAS  Google Scholar 

  24. Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124:183–193

    Article  PubMed  CAS  Google Scholar 

  25. Hahlbrock K, Grisebach H (1979) Enzymatic controls in biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30:105–130

    Article  CAS  Google Scholar 

  26. Weitzel C, Petersen M (2010) Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. Planta 232:731–742

    Article  PubMed  CAS  Google Scholar 

  27. Tuan PA, Park WT, Xu H, Park NI, Park SU (2012) Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60:5945–5951

    Article  CAS  Google Scholar 

  28. Lei W, Yao RX, Kang XH, Tang SH, Qiao AM, Sun M (2011) Isolation and characterization of the anthocyanidin genes PAL, F3H and DFR of Scutellaria viscidula (Lamiaceae). Genet Mol Res 10:3385–3402

    Article  PubMed  CAS  Google Scholar 

  29. Hu GS, Jia JM, Hur YJ, Chung YS, Lee JH, Yun DJ, Chung WS, Yi GH, Kim TH, Kim DH (2011) Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola. Mol Biol Rep 38:3741–3750

    Article  PubMed  CAS  Google Scholar 

  30. Lee BK, Park MR, Srinivas B, Chun JC, Kwon IS, Chung IM, Yoo NH, Choi KG, Yun SJ (2003) Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells 16:34–39

    PubMed  CAS  Google Scholar 

  31. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  32. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  33. Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909

    Article  PubMed  CAS  Google Scholar 

  34. Lu S, Zhou Y, Li L, Chiang VL (2006) Distinct roles of cinnamate 4-hydroxylase genes in Populus. Plant Cell Physiol 47:905–914

    Article  PubMed  CAS  Google Scholar 

  35. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  36. Miyamoto K, Shimizu T, Lin F, Sainsbury F, Thuenemann E, Lomonossoff G, Nojiri H, Yamane H, Okada K (2012) Identification of an E-box motif responsible for the expression of jasmonic acid-induced chitinase gene OsChia4a in rice. J Plant Physiol 169:621–627

    Article  PubMed  CAS  Google Scholar 

  37. Sugimoto K, Takeda S, Hirochika H (2003) Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif(AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J 36:550–564

    Article  PubMed  CAS  Google Scholar 

  38. Kumar A, Ellis BE (2001) The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol 127:230–239

    Article  PubMed  CAS  Google Scholar 

  39. Camm EL, Towers GHN (1973) Phenylalanine ammonia lyase. Phytochemistry 1973(12):961–973

    Article  Google Scholar 

  40. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  PubMed  CAS  Google Scholar 

  41. Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491–1499

    Article  PubMed  CAS  Google Scholar 

  42. Whitbred JM, Schuler MA (2000) Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol 124:47–58

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki S, Nakatsubo T, Umezawa T, Shimada M (2002) First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem Commun 2002:1088–1089

    Article  Google Scholar 

  44. Suzuki S, Yamamura M, Shimada M, Umezawa T (2004) A heartwood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by a Cryptomeria japonica enzyme preparation. Chem Commun 2004:2838–2839

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shilin Chen and the sequencing group in our institute for kindly providing the S. miltiorrhiza genome sequence. This work was supported by grants from the Beijing Natural Science Foundation (Grant No. 5112026 to SL), the Major Scientific and Technological Special Project for Significant New Drugs Creation (Grant No. 2012ZX09301002-001-031 to SL), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1150 to SL), the Research Fund for the Doctoral Program of Higher Education of China (20111106110033 to SL), and the Program for Xiehe Scholars in Chinese Academy of Medical Sciences & Peking Union Medical College (to SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanfa Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Shao, F., Ma, Y. et al. The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40, 4301–4310 (2013). https://doi.org/10.1007/s11033-013-2517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2517-3

Keywords