Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Functions of RNA N6-methyladenosine modification in cancer progression

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 July 2023

This article has been updated

Abstract

N6-methyladenosine (m6A) serves as a major RNA methylation modification and impacts the initiation and progression of various human cancers through diverse mechanisms. It has been reported that m6A RNA methylation is involved in different physiological and pathological processes, including stem cell differentiation and motility, immune response, cellular stress, tissue renewal and viral infection. In this review, the m6A modification and its regulatory functions in a few major cancers is introduced. The detection approaches for the m6A sites identification are discussed. Additionally, the potential of the RNA m6A modification in clinical application is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Traube FR, Carell T (2017) The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol 14:1099–1107. https://doi.org/10.1080/15476286.2017.1318241

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pan Y, Ma P, Liu Y, Li W, Shu Y (2018) Multiple functions of m(6)A RNA methylation in cancer. J Hematol Oncol 11:48. https://doi.org/10.1186/s13045-018-0590-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R (2017) Roles of RNA methylation by means of N(6)-methyladenosine (m(6)A) in human cancers. Cancer Lett 408:112–120. https://doi.org/10.1016/j.canlet.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  4. Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF (2015) N6-methyladenosine marks primary microRNAs for processing. Nature 519:482–485. https://doi.org/10.1038/nature14281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K, Miao Y (2018) ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem 48:838–846. https://doi.org/10.1159/000491915

    Article  CAS  PubMed  Google Scholar 

  6. Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, Kellner S, Holter SM, Garrett L, Wurst W, Becker L, Klopstock T, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Karadottir RT, Helm M, Ule J, Gleeson JG, Odom DT, Frye M (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33:2020–2039. https://doi.org/10.15252/embj.201489282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallo R (1971) Transfer RNA and transfer RNA methylation in growing and “resting” adult and embryonic tissues and in various oncogenic systems. Cancer Res 31:621–629

    CAS  PubMed  Google Scholar 

  8. Gantt R (1971) In vitro transfer RNA methylation in paired neoplastic and nonneoplastic cell cultures. Cancer Res 31:609–612

    CAS  PubMed  Google Scholar 

  9. Turkington R (1971) The regulation of transfer RNA methylation in normal and neoplastic mammary cells. Cancer Res 31:644–646

    CAS  PubMed  Google Scholar 

  10. Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, Garcia M, Laforets F, Marcel V, Baudin-Baillieu A, Bertin P, Coute Y, Adrait A, Meyer M, Therizols G, Yusupov M, Namy O, Ohlmann T, Motorin Y, Catez F, Diaz JJ (2017) Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci USA 114:12934–12939. https://doi.org/10.1073/pnas.1707674114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karijolich J, Yu Y-T (2014) Spliceosomal snRNA modifications and their function. RNA Biol 7:192–204. https://doi.org/10.4161/rna.7.2.11207

    Article  Google Scholar 

  12. Adams J, Cory S (1975) Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 255:28–33

    Article  CAS  PubMed  Google Scholar 

  13. Perry RP, Kelley DE, et al (1975) The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4:387–394

    Article  CAS  PubMed  Google Scholar 

  14. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aloni Y, Dhar R, Khoury G (1979) Methylation of nuclear simian virus 40 RNAs. J Virol 32:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beemon K, Keith J (1977) Localization of N6-methyladenosine in the Rous sarcoma virus genome. J Mol Biol 113:165–179

    Article  CAS  PubMed  Google Scholar 

  17. Adhikari S, Xiao W, Zhao YL, Yang YG (2016) m(6)A: signaling for mRNA splicing. RNA Biol 13:756–759. https://doi.org/10.1080/15476286.2016.1201628

    Article  PubMed  PubMed Central  Google Scholar 

  18. Genenncher B, Durdevic Z, Hanna K, Zinkl D, Mobin MB, Senturk N, Da Silva B, Legrand C, Carre C, Lyko F, Schaefer M (2018) Mutations in cytosine-5 tRNA methyltransferases impact mobile element expression and genome stability at specific DNA repeats. Cell Rep 22:1861–1874. https://doi.org/10.1016/j.celrep.2018.01.061

    Article  CAS  PubMed  Google Scholar 

  19. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, Vagbo CB, Kussnierczyk A, Klungland A, Darnell JE Jr, Darnell RB (2015) A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29:2037–2053. https://doi.org/10.1101/gad.269415.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S, Hanna JH, Black DL, Darnell JE, Darnell RB (2017) m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006. https://doi.org/10.1101/gad.301036.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-sEq. Nature 485:201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  22. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772. https://doi.org/10.1038/nmeth.3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15:293–306. https://doi.org/10.1038/nrg3724

    Article  CAS  PubMed  Google Scholar 

  24. Maity A, Das B (2016) N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases. FEBS J 283:1607–1630. https://doi.org/10.1111/febs.13614

    Article  CAS  PubMed  Google Scholar 

  25. Peer E, Rechavi G, Dominissini D (2017) Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr Opin Chem Biol 41:93–98. https://doi.org/10.1016/j.cbpa.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Dai D, Wang H, Zhu L, Jin H, Wang X (2018) N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis 9:124. https://doi.org/10.1038/s41419-017-0129-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaffrey SR, Kharas MG (2017) Emerging links between m(6)A and misregulated mRNA methylation in cancer. Genome Med 9:2. https://doi.org/10.1186/s13073-016-0395-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R (2017) Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett 408:112–120. https://doi.org/10.1016/j.canlet.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  29. Flores JV, Cordero-Espinoza L, Oeztuerk-Winder F, Andersson-Rolf A, Selmi T, Blanco S, Tailor J, Dietmann S, Frye M (2017) Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility. Stem Cell Rep 8:112–124. https://doi.org/10.1016/j.stemcr.2016.11.014

    Article  CAS  Google Scholar 

  30. Li H, Tong J, Zhu S, Batista P, Duffy E, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton J, Chen Y, Kluger Y, Simon M, Chang H, Yin Z, Flavell R (2017) m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li LJ, Fan YG, Leng RX, Pan HF, Ye DQ (2018) Potential link between m(6)A modification and systemic lupus erythematosus. Mol Immunol 93:55–63. https://doi.org/10.1016/j.molimm.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  32. Blanco S, Frye M (2014) Role of RNA methyltransferases in tissue renewal and pathology. Curr Opin Cell Biol 31:1–7. https://doi.org/10.1016/j.ceb.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife. https://doi.org/10.7554/eLife.15528

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cao G, Li H, Yin Z, Flavell R (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Huang J, Zou T, Yin P (2017) Human m(6)A writers: two subunits, 2 roles. RNA Biol 14:300–304. https://doi.org/10.1080/15476286.2017.1282025

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol cell 63:306–317. https://doi.org/10.1016/j.molcel.2016.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, Zou T, Yin P (2016) Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534:575–578. https://doi.org/10.1038/nature18298

    Article  CAS  PubMed  Google Scholar 

  38. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, De Braekeleer E, Ponstingl H, Hendrick A, Vakoc CR, Vassiliou GS, Kouzarides T (2017) Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552:126–131. https://doi.org/10.1038/nature24678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, Sheng Y, Wang Y, Wunderlich M, Zhang B, Dore LC, Su R, Deng X, Ferchen K, Li C, Sun M, Lu Z, Jiang X, Marcucci G, Mulloy JC, Yang J, Qian Z, Wei M, He C, Chen J (2018) mettl14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell 22:191–205 e199. https://doi.org/10.1016/j.stem.2017.11.016

    Article  CAS  PubMed  Google Scholar 

  40. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189. https://doi.org/10.1038/cr.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer K, Jaffrey S (2017) Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol 33:319–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, Sanjana NE, Freinkman E, Pacold ME, Satija R, Mikkelsen TS, Hacohen N, Zhang F, Carr SA, Lander ES, Regev A (2014) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296. https://doi.org/10.1016/j.celrep.2014.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR (2016) m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369–373. https://doi.org/10.1038/nature19342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK (2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835 e814. https://doi.org/10.1016/j.cell.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hori H (2017) Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules https://doi.org/10.3390/biom7010023

    Article  PubMed  PubMed Central  Google Scholar 

  46. Long T, Li J, Li H, Zhou M, Zhou XL, Liu RJ, Wang ED (2016) Sequence-specific and shape-selective RNA recognition by the human RNA 5-methylcytosine methyltransferase NSun6. J Biol Chem 291:24293–24303. https://doi.org/10.1074/jbc.M116.742569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887. https://doi.org/10.1038/nchembio.687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur J-J, Chen Q, Gross SS, Elemento O, Debart F, Kiledjian M, Jaffrey SR (2016) Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541:371–375. https://doi.org/10.1038/nature21022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z (2014) Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem 289:11571–11583. https://doi.org/10.1074/jbc.M113.546168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29. https://doi.org/10.1016/j.molcel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  51. Loos RJ, Yeo GS (2014) The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol 10:51–61. https://doi.org/10.1038/nrendo.2013.227

    Article  CAS  PubMed  Google Scholar 

  52. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419. https://doi.org/10.1038/cr.2014.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J (2014) Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem 289:17299–17311. https://doi.org/10.1074/jbc.M114.550350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patil DP, Pickering BF, Jaffrey SR (2018) Reading m(6)A in the transcriptome: m(6)A-binding proteins. Trends Cell Biol 28:113–127. https://doi.org/10.1016/j.tcb.2017.10.001

    Article  CAS  PubMed  Google Scholar 

  55. Luo S, Tong L (2014) Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci USA 111:13834–13839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH, Stamm S (2010) The YTH domain is a novel RNA binding domain. J Biol Chem 285:14701–14710. https://doi.org/10.1074/jbc.M110.104711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C (2014) N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117–120. https://doi.org/10.1038/nature12730

    Article  CAS  PubMed  Google Scholar 

  58. Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J (2015) Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J Biol Chem 290:24902–24913. https://doi.org/10.1074/jbc.M115.680389

    Article  CAS  PubMed  Google Scholar 

  59. Li F, Zhao D, Wu J, Shi Y (2014) Structure of the YTH domain of human YTHDF2 in complex with an m(6)A mononucleotide reveals an aromatic cage for m(6)A recognition. Cell Res 24:1490–1492. https://doi.org/10.1038/cr.2014.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C, Xu Y (2014) Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res 24:1493–1496. https://doi.org/10.1038/cr.2014.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, Bhattarai DP, Zhao YL, Sun BF, Yang YG (2017) Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res 27:444–447. https://doi.org/10.1038/cr.2017.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27:315–328. https://doi.org/10.1038/cr.2017.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C, Min J (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 10:927–929. https://doi.org/10.1038/nchembio.1654

    Article  CAS  PubMed  Google Scholar 

  64. Jain D, Puno M, Meydan C, Lailler N, Mason C, Lima C, Anderson K, Keeney S (2018) Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife 7:e30919

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS (2017) Regulation of m(6)A transcripts by the 3′ →  5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol Cell 68:374–387 e312. https://doi.org/10.1016/j.molcel.2017.09.021

    Article  CAS  PubMed  Google Scholar 

  66. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010. https://doi.org/10.1016/j.cell.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Genuth NR, Barna M (2018) Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet. https://doi.org/10.1038/s41576-018-0008-z

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308. https://doi.org/10.1016/j.cell.2015.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li S, Mason CE (2014) The pivotal regulatory landscape of RNA modifications. Annu Rev Genom Hum Genet 15:127–150. https://doi.org/10.1146/annurev-genom-090413-025405

    Article  CAS  Google Scholar 

  70. Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T (2013) Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19:1848–1856. https://doi.org/10.1261/rna.041178.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou KI, Parisien M, Dai Q, Liu N, Diatchenko L, Sachleben JR, Pan T (2016) N(6)-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol 428:822–833. https://doi.org/10.1016/j.jmb.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  72. Chen J, Odenike O, Rowley JD (2010) Leukaemogenesis: more than mutant genes. Nat Rev Cancer 10:23–36. https://doi.org/10.1038/nrc2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373:1136–1152. https://doi.org/10.1056/NEJMra1406184

    Article  CAS  PubMed  Google Scholar 

  74. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong G-M, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J. (2017) FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31:127–141. https://doi.org/10.1016/j.ccell.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  75. Kwok CT, Marshall AD, Rasko JE, Wong JJ (2017) Genetic alterations of m(6)A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol 10:39. https://doi.org/10.1186/s13045-017-0410-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, Yu M, Skibbe J, Dai Q, Zou D, Wu T, Yu K, Weng H, Huang H, Ferchen K, Qin X, Zhang B, Qi J, Sasaki AT, Plas DR, Bradner JE, Wei M, Marcucci G, Jiang X, Mulloy JC, Jin J, He C, Chen J (2018) R-2HG exhibits anti-tumor activity by targeting FTO/m 6 A/MYC/CEBPA signaling. Cell 172:90–105.e123. https://doi.org/10.1016/j.cell.2017.11.031

    Article  CAS  PubMed  Google Scholar 

  77. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  PubMed  Google Scholar 

  78. Wang X, Li Z, Kong B, Song C, Cong J, Hou J, Wang S (2017) Reduced mA mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget 8:98918–98930

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY, Zhe H (2018) FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Mol Carcinog 57:590–597. https://doi.org/10.1002/mc.22782

    Article  CAS  PubMed  Google Scholar 

  80. Lathia J, Mack S, Mulkearns-Hubert E, Valentim C, Rich J (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, Majumder S, He C, Huang S (2017) m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606.e596. https://doi.org/10.1016/j.ccell.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dixit D, Xie Q, Rich JN, Zhao JC (2017) Messenger RNA methylation regulates glioblastoma tumorigenesis. Cancer Cell 31:474–475. https://doi.org/10.1016/j.ccell.2017.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang C-G, Riggs AD, He C, Shi Y (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67:439–448. https://doi.org/10.3322/caac.21412

    Article  PubMed  Google Scholar 

  85. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113:2047–2056. https://doi.org/10.1073/pnas.1602883113

    Article  Google Scholar 

  86. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E, Semenza GL (2016) Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–64542. https://doi.org/10.18632/oncotarget.11743

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M (2017) Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics 7:3461–3477. https://doi.org/10.7150/thno.20657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen M, Wei L, Law C, Tsang F, Shen J, Cheng C, Tsang L, Ho D, Chiu D, Lee J, Wong C, Ng I, Wong C (2017) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67:2254–2270

    Article  Google Scholar 

  89. Zhao X, Chen Y, Mao Q, Jiang X, Jiang W, Chen J, Xu W, Zhong L, Sun X (2018) Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 21:859–868. https://doi.org/10.3233/CBM-170791

    Article  CAS  PubMed  Google Scholar 

  90. Lai W, Jia J, Yan B, Jiang Y, Shi Y, Chen L, Mao C, Liu X, Tang H, Gao M, Cao Y, Liu S, Tao Y (2018) Baicalin hydrate inhibits cancer progression in nasopharyngeal carcinoma by affecting genome instability and splicing. Oncotarget 9:901–914

    Article  PubMed  Google Scholar 

  91. Li J, Meng S, Xu M, Wang S, He L, Xu X, Wang X, Xie L (2018) Downregulation of N-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N-methyladenosine levels. Oncotarget 9:3752–3764

    Article  PubMed  Google Scholar 

  92. Nishizawa Y, Konno M, Asai A, Koseki J, Kawamoto K, Miyoshi N, Takahashi H, Nishida N, Haraguchi N, Sakai D, Kudo T, Hata T, Matsuda C, Mizushima T, Satoh T, Doki Y, Mori M, Ishii H (2018) Oncogene c-Myc promotes epitranscriptome mA reader YTHDF1 expression in colorectal cancer. Oncotarget 9:7476–7486

    Article  PubMed  Google Scholar 

  93. Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, Doki Y, Mori M, Ishii H, Ogawa K (2018) The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol 52:621–629. https://doi.org/10.3892/ijo.2017.4219

    Article  CAS  PubMed  Google Scholar 

  94. Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L (2017) Methylated DNA/RNA in body fluids as biomarkers for lung cancer. Biol Proc 19:2. https://doi.org/10.1186/s12575-017-0051-8

    Article  CAS  Google Scholar 

  95. You Y, Liu L, Zhang M, Zhu Y, He L, Li D, Zhang J (2014) Genomic characterization of a Helicobacter pylori isolate from a patient with gastric cancer in China. Gut Pathog 6:5. https://doi.org/10.1186/1757-4749-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, Yang H, Wang Z (2017) The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget 8:96103–96116

    Google Scholar 

  97. Huang W, Qi C-B, Lv S-W, Xie M, Feng Y-Q, Huang W-H, Yuan B-F (2016) Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal Chem 88:1378–1384. https://doi.org/10.1021/acs.analchem.5b03962

    Article  CAS  PubMed  Google Scholar 

  98. Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K (2017) Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37:522–533. https://doi.org/10.1038/onc.2017.351

    Article  CAS  PubMed  Google Scholar 

  99. Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G (2015) Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-SEq. Methods Enzymol 560:131–147. https://doi.org/10.1016/bs.mie.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  100. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meng J, Lu Z, Liu H, Zhang L, Zhang S, Chen Y, Rao M, Huang Y (2014) A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods 69:274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cui X, Meng J, Zhang S, Rao MK, Chen Y, Huang Y (2016) A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data. BMC Genom 17(Suppl 7):520. https://doi.org/10.1186/s12864-016-2913-x

    Article  CAS  Google Scholar 

  103. Cui X, Meng J, Zhang S, Chen Y, Huang Y (2016) A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics 32:i378–i385. https://doi.org/10.1093/bioinformatics/btw281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Golovina AY, Dzama MM, Petriukov KS, Zatsepin TS, Sergiev PV, Bogdanov AA, Dontsova OA (2014) Method for site-specific detection of m6A nucleoside presence in RNA based on high-resolution melting (HRM) analysis. Nucleic Acids Res 42:e27. https://doi.org/10.1093/nar/gkt1160

    Article  CAS  PubMed  Google Scholar 

  105. Glasner H, Riml C, Micura R, Breuker K (2017) Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res 45:8014–8025. https://doi.org/10.1093/nar/gkx470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang S, Zhang S, Liu L, Meng J, Huang Y (2016) m6A-driver: identifying context-specific mRNA m6A methylation-driven gene interaction networks. PLoS Comput Biol 12:e1005287

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jiang S, Xie Y, He Z, Zhang Y, Zhao Y, Chen L, Zheng Y, Miao Y, Zuo Z, Ren J (2018) m6ASNP: a tool for annotating genetic variants by m6A function. GigaScience. https://doi.org/10.1093/gigascience/giy035

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z, Ren J (2018) m6AVar: a database of functional variants involved in m6A modification. Nucl Acids Res 46:D139–D145. https://doi.org/10.1093/nar/gkx895

    Article  CAS  PubMed  Google Scholar 

  109. Chen B, Ye F, Yu L, Jia G, Huang X, Zhang X, Peng S, Chen K, Wang M, Gong S, Zhang R, Yin J, Li H, Yang Y, Liu H, Zhang J, Zhang H, Zhang A, Jiang H, Luo C, Yang C-G (2012) Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 134:17963–17971. https://doi.org/10.1021/ja3064149

    Article  CAS  PubMed  Google Scholar 

  110. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia G-F, Luo C, Yang C-G (2015) Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43:373–384. https://doi.org/10.1093/nar/gku1276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the PubMed database and its contributors for this valuable public data set. We also thank Dr Menglong Zhao from Dutch Institute for Fundamental Energy Research for helping to edit this manuscript.

Funding

This work was supported by the Key Project of Scientific Research Foundation for Colleges and Universities in Henan Province (Grant No. 16A320081) and National Natural Science Foundation of China (Grant No. 81802325).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the preparation of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Feng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, Y., Song, R. et al. Functions of RNA N6-methyladenosine modification in cancer progression. Mol Biol Rep 46, 2567–2575 (2019). https://doi.org/10.1007/s11033-019-04655-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04655-4

Keywords