Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

BeWell: Sensing Sleep, Physical Activities and Social Interactions to Promote Wellbeing

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Smartphone sensing and persuasive feedback design is enabling a new generation of wellbeing apps capable of automatically monitoring multiple aspects of physical and mental health. In this article, we present BeWell+ the next generation of the BeWell smartphone wellbeing app, which monitors user behavior along three health dimensions, namely sleep, physical activity, and social interaction. BeWell promotes improved behavioral patterns via feedback rendered as an ambient display on the smartphone’s wallpaper. With BeWell+, we introduce new mechanisms to address key limitations of the original BeWell app; specifically, (1) community adaptive wellbeing feedback, which generalizes to diverse user communities (e.g., elderly, children) by promoting better behavior yet remains realistic to the user’s lifestyle; and, (2) wellbeing adaptive energy allocation, which prioritizes monitoring fidelity and feedback responsiveness on specific health dimensions (e.g., sleep) where the user needs additional help. We evaluate BeWell+ with a 27 person, 19 day field trial. Our findings show that not only can BeWell+ operate successfully on consumer smartphones; but also users understand feedback and respond by taking steps towards leading healthier lifestyles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. BeWell+ is available for download and use with any off-the-shelf Android Smartphone. Please download BeWell+ from: http://www.bewellapp.org

References

  1. Center for Disease Control and Prevention. http://www.cdc.gov

  2. Fitbit. http://www.fitbit.com

  3. National Sleep Foundation. http://www.sleepfoundation.org

  4. Nike+. http://nikerunning.nike.com

  5. Philips Directlife. http://www.directlife.philips.com

  6. SF-36.org. A Community for Measuring Health Outcoming using SF tools. http://www.sf-36.org/tools/SF36.shtml

  7. Shuteye. http://dub.washington.edu/projects/shuteye

  8. bLife. http://www.myblife.com

  9. Ahtinen A, Mattila E, Vaatanen A, Hynninen L, Salminen J, Koskinen E, Laine K (2009) User experiences of mobile wellness applications in health promotion: user study of wellness diary, mobile coach and selfrelax. In: Proceedings of Pervasive Health ’09

  10. Ali A, Hossain S, Hovsepian K, Rahman M, Plarre K, Kumar S (2012) mPuff: automated detection of cigarette smoking puffs from respiration measurements. In: Proceedings of IPSN ’12

  11. Alvarez G, Ayas N (2004) The impact of daily sleep duration on health: a review of the literature. Prog Cardiovasc Nurs 19(2):56

    Article  Google Scholar 

  12. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR, Schmitz KH, Emplaincourt PO, Jacobs DR, Leon AS (2000) Compendium of physical activities: An update of activity codes and MET intensities. Med Sci Sports Exerc 32:9

    Article  Google Scholar 

  13. Balan R, Satyanarayanan M, Park S, Okoshi T (2003) Tactics-based Remote execution for mobile computing. In: Proceedings of Mobisys ’03

  14. Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Proceedings of Pervasive ’04

  15. Bishop CM (2006) Pattern recognition and machine learning (Information Science and Statistics). Springer

  16. Consolvo S, Klasnja P, McDonald DW, Avrahami D, Froehlich J, LeGrand L, Libby R, Mosher K, Landay JA (2008) Flowers or a Robot Army?: encouraging awareness and activity with personal, mobile displays. In: Proceedings of UbiComp ’08

  17. Consolvo S, Klasnja P, McDonald DW, Landay J (2010) Goal-setting considerations for persuasive technologies that encourage physical activity. In: Proceedings of Persuasive ’09

  18. Denning T, Andrew A, Chaudhri R, Hartung C, Lester J, Borriello G, Duncan G (2009) BALANCE: towards a usable pervasive wellness application with accurate activity inference. In: Proceedings of HotMobile ’09

  19. Dipietro L, Caspersen C, Ostfeld A, Nadel E (1993) A survey for assessing physical activity among older adults. Med Sci Sports Exerc 25:628–628

    Article  Google Scholar 

  20. Ferreira P, Sanches P, Höök K, Jaensson T (2008) License to chill!: how to empower users to cope with stress. In: Proc of NordiCHI ’08

  21. Fogg BJ (2002) Persuasive technology: using Computers to change what we think and do. Ubiquity 2002 (December):2

  22. Fox K (1999) The influence of physical activity on mental well-being. Public Health Nutr 2(3a):411–418

    Article  Google Scholar 

  23. Halko S, Kientz J (2010) Personality and persuasive technology: an exploratory study on health-promoting mobile applications. In: Proceedings of Persuasive ’10

  24. Hareva DH, Okada H, Kitawaki T, Oka H (2009) Supportive Intervention using a mobile phone in behavior modification. Acta Med Okayama 63(2):113–20

    Google Scholar 

  25. Penedo F, Dahn J (2005) Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr Opin Psychiatr 18(2):189

    Article  Google Scholar 

  26. Rozin P (2005) The meaning of food in our lives: a cross-cultural perspective on eating and well-being. J Nutr Educ Behav 37:S107–S112

    Article  Google Scholar 

  27. George L, Blazer D, Hughes D, Fowler N (1989) Social support and the outcome of major depression. Brit J Psychiatry 154(4):478

    Article  Google Scholar 

  28. Knutson JF, Lansing CR (1990) The relationship between communication problems and psychological difficulties in persons with profound acquired hearing loss. J Speech Hear Disord 55(4):656

    Article  Google Scholar 

  29. Blazer DG (1982) Social support and mortality in an elderly community population. Am J Epidemiol 115(5):684

    Google Scholar 

  30. Hicks J, Ramanathan N, Kim D, Monibi M, Selsky J, Hansen M, Estrin D (2010) Andwellness: an open mobile system for activity and experience sampling. In: Proceedings of wireless health ’10

  31. Paffenbarger R, Hyde R, Wing A, Hsieh C (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314(10):605–613

    Article  Google Scholar 

  32. Klasnja P, Consolvo S, McDonald D, Landay J, Pratt W (2009) Using mobile and personal sensing technologies to support health behavior change in everyday life: lessons learned. In: Proceedings of AMIA 09

  33. Lamminmaki E, Parkka J, Hermersdorf J, Kaasinen J, Samposalo K, Vainio J, Kolari J, Kulju M, Lappalainen R, Korhonen I (2005) Wellness diary for mobile phones. In: Proceedings of EMBEC ’05

  34. Lane ND, Mohammod M, Lin M, Yang X, Lu H, Ali S, Doryab A, Berke E, Choudhury T, Campbell A (2011) BeWell: a smartphone application to monitor, model and promote wellbeing. In: Proceedings of Pervasive Health ’11

  35. Lane ND, Xu Y, Lu H, Hu S, Choudhury T, Campbell AT, Zhao F (2011) Enabling large-scale human activity inference on smartphones using community similarity networks (CSN). In: Proceedings of Ubicomp ’11

  36. Lane ND, Xu Y, Lu H, Campbell A, Choudhury T, Eisenman S (2011) Exploiting social networks for large-scale human behavior modeling. Pervasive Comput IEEE 10(4):45–53

    Article  Google Scholar 

  37. Lester J, Choudhury T, Kern N, Borriello G, Hannaford B (2005) A Hybrid discriminative/generative approach for modeling human activities. In: Proceedings of the IJCAI ’05

  38. LiKamWa R, Liu Y, Lane N, Zhong L (2011) Can Your Smartphone Infer Your Mood? In: Proceedings of PhoneSense ’11

  39. Pilcher J, Ginter D, Sadowsky B (1997) Sleep quality versus sleep quantity: relationships between sleep and measures of health, well-being and sleepiness in college students. J Psychosom Res 42(6):583–596

    Article  Google Scholar 

  40. Lin JJ, Mamykina L, Lindtner S, Delajoux G, Strub HB (2006) Fish’n’steps: encouraging physical activity with an interactive computer game. In: Proc. of UbiComp ’06

  41. Lin M, Lane ND, Mohammod M, Yang X, Lu H, Cardone G, Ali S, Doryab A, Berke E, Campbell A, Choudhury T (2012) BeWell+: multi-dimensional wellbeing monitoring with community-guided user feedback and energy optimization. In: Proceedings of wireless health ’12

  42. Lu H, Pan W, Lane ND, Choudhury T, Campbell AT (2009) Soundsense: scalable sound sensing for people-centric applications on mobile phones. In: Proceedings of MobiSys ’09

  43. Lu H, Yang J, Liu Z, Lane ND, Choudhury T, Campbell AT (2010) The jigsaw continuous sensing engine for mobile phone applications. In: Proceedings of Sensys ’10

  44. Miluzzo E, Oakley J, Lu H, Lane N, Peterson R, Campbell A (2008) Evaluating the iphone as a mobile platform for people-centric sensing applications. In: Proceedings of UrbanSense ’08

  45. Norris R, Carroll D, Cochrane R (1992) The effects of physical activity and exercise training on psychological stress and well-being in an adolescent population. J Psychosom Res 36(1):55–65

    Article  Google Scholar 

  46. Patrick K, Raab F, Adams M, Dillon L, Zabinski M, Rock C, Griswold W, Norman G (2009) A text message–based intervention for weight loss: randomized controlled trial. J Med Internet Res 11(1)

  47. Wang Y, Lin J, Annavaram M, Jacobson Q, Hong J, Krishnamachari B, Sadeh N (2009) A framework of energy efficient mobile sensing for automatic user state recognition. In: Proceedings of Mobisys ’09

  48. Yaggi H, Araujo A, McKinlay J (2006) Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 29(3):657

    Article  Google Scholar 

  49. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell A (2010) A survey of mobile phone sensing. IEEE Commun Mag 48:140–150

    Article  Google Scholar 

  50. Rachuri KK, Mascolo C, Musolesi M, Rentfrow P (2011) SociableSense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In: Proceedings of Mobicom ’11

  51. Chu D, Lane ND, Lai TT, Pang C, Meng X, Guo Q, Li F, Zhao F (2011) Balancing energy, latency and accuracy for mobile sensor data classification. In: Proceedings of Sensys ’

  52. Estrin D, Sim I (2011) Open mHealth architecture: an engine for health care innovation. Science

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Lane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, N.D., Lin, M., Mohammod, M. et al. BeWell: Sensing Sleep, Physical Activities and Social Interactions to Promote Wellbeing. Mobile Netw Appl 19, 345–359 (2014). https://doi.org/10.1007/s11036-013-0484-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-013-0484-5

Keywords