Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Pricing Power Control Scheme with Statistical Delay QoS Provisioning in Uplink of Two-tier OFDMA Femtocell Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Femtocell is a promising technique to enhance indoor coverage and improve network capacity. Nevertheless, because of the random and co-channel deployment of femtocells, the macrocell will suffer serious cross-tier interference from femtocells in two-tier femtocell networks. Thus, interference mitigation in femtocell networks has been an indispensable task. Meanwhile, with the explosive popularity of smart terminals, especially smart phones and tablets, the wireless networks have loaded a mount of data services with diverse delay quality of service (QoS) requirements. However, due to the stochastically varying nature of wireless physical channel, it is extremely difficult to offer a deterministic delay guarantee in wireless networks. Therefore, the effective capacity of femtocell users (FU) has been introduced to provide a statistical delay QoS provisioning. For that reason, in this paper, we will study the interference mitigation with statistical delay QoS guarantee in uplink two-tier orthogonal frequency division multiple access (OFDMA) femtocell networks. In order to mitigate the cross-tier interference at macrocell base station (MBS), we adopt a price-based power control strategy, in which the MBS protects itself by pricing the interference from FU. Additionally, to guarantee the statistical delay QoS for each FU, effective capacity is introduced into their utility functions. Then, a Stackelberg game is formulated to study the joint utility maximization of the MBS and the FUs subject to a maximum tolerable interference power constraint at the MBS. Subsequently, based on the mathematical analysis of the equilibrium of the formulated Stalkeberg game, a particle swarm optimization (PSO) aided power allocation (PSOPA) algorithm is proposed to solve this optimization problem. At last, simulation results show that our proposed PSOPA algorithm can not only improve significantly the average effective capacity of each FU and guarantee their statistical delay QoS, but also converge successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. (2014). Cisco, White Paper

  2. Chandrasekhar V, Andrews J, Gatherer A (2008) IEEE Commun Mag 46(9):59. doi:10.1109/MCOM.2008.4623708

    Article  Google Scholar 

  3. Andrews J, Claussen H, Dohler M, Rangan S, Reed M (2012) IEEE J Sel Areas Commun 30(3):497. doi:10.1109/JSAC.2012.120401

    Article  Google Scholar 

  4. Bennis M, Perlaza S (2011). In: 2011 IEEE International Conference on Communications (ICC), pp 1–5. doi:10.1109/icc.2011.5962649

  5. Lien SY, Tseng CC, Chen KC, Su CW (2010). In: 2010 IEEE International Conference on Communications (ICC), pp 1–6. doi:10.1109/ICC.2010.5502784

  6. Sun Y, Jover R, Wang X (2012) IEEE Trans Wirel Commun 11(2):614. doi:10.1109/TWC.2011.120511.101794

    Article  Google Scholar 

  7. Jo HS, Mun C, Moon J, Yook JG (2009) IEEE Trans Wirel Commun 8(10):4906. doi:10.1109/TWC.2009.080457

    Article  Google Scholar 

  8. Saraydar C, Mandayam NB, Goodman D (2001) IEEE J Sel Areas Commun 19(10):1883. doi:10.1109/49.957304

    Article  Google Scholar 

  9. Hou Y, Laurenson D (2010). In: 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), pp 1–5. doi:10.1109/VETECF.2010.5594154

  10. Erturk M, Aki H, Guvenc I, Arslan H (2010). In: 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), pp 1–6. doi:10.1109/GLOCOM.2010.5683397

  11. Ellouze R, Gueroui M, Alimi A (2011). In: 2011 IEEE Wireless Communications and Networking Conference (WCNC), pp 84–89. doi:10.1109/WCNC.2011.5779111

  12. Taleb T, Ksentini A (2012). In: 2012 IEEE International Conference on Communications (ICC), pp 5146–5150. doi:10.1109/ICC.2012.6364289

  13. Lin S, Tian H (2013). In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp 649–654. doi:10.1109/WCNC.2013.6554640

  14. Tsiropoulou E, Katsinis G, Vamvakas P, Papavassiliou S (2013). In: 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp 104–108. doi:10.1109/CAMAD.2013.6708098

  15. Wu D, Negi R (2003) IEEE Trans Wirel Commun 2(4):630. doi:10.1109/TWC.2003.814353

    Google Scholar 

  16. Tang J, Zhang X (2007) IEEE Trans Wirel Commun 6(12):4349. doi:10.1109/TWC.2007.06031

    Article  Google Scholar 

  17. Qiao D, Gursoy M, Velipasalar S (2011) IEEE Trans Commun 59 (7):2006. doi:10.1109/TCOMM.2011.051311.090315

    Article  Google Scholar 

  18. Xiong C, Li G, Liu Y, Chen Y, Xu S (2013) IEEE Trans Wirel Commun 12(6):3085. doi:10.1109/TWC.2013.050313.121695

    Article  Google Scholar 

  19. Al Daoud A, Alpcan T, Agarwal S, Alanyali M (2008). In: 2008. CDC 2008. 47th IEEE Conference on Decision and Control, pp 1422–1427. doi:10.1109/CDC.2008.4738975

  20. Economides AA, Silvester JA (1990). In: Proceedings 28th Annual Allerton Conference on Communications, Control and Computing, p 1990

  21. Boyd S, Vandenberghe L (2004). In: Cambridge University Press

  22. Saraydar C, Mandayam NB, Goodman D (2002) IEEE Trans Commun 50(2):291. doi:10.1109/26.983324

    Article  Google Scholar 

  23. Kennedy J, Eberhart R (1995). In: IEEE International Conference on Neural Networks, 1995. Proceedings, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  24. Shi Y, Eberhart R (1999). In: 1999. CEC 99. Proceedings of the 1999 Congress on Evolutionary Computation, vol 3, p 1950. doi:10.1109/CEC.1999.785511

  25. Xie T, Zhang G, Xie J, Liu Y (2013). In: 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), pp 489–493. doi:10.1109/IMSNA.2013.6743322

  26. RAN4 G. In: R4-092042

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (61271179) and the fundamental research funds for the central universities (2013RC0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Lu, Z., Wen, X. et al. A Pricing Power Control Scheme with Statistical Delay QoS Provisioning in Uplink of Two-tier OFDMA Femtocell Networks. Mobile Netw Appl 20, 413–423 (2015). https://doi.org/10.1007/s11036-015-0628-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-015-0628-x

Keywords