Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi Source Data Association Clustering Analysis Based on Symmetric Encryption Algorithm

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Due to the low clustering accuracy of the existing methods, a multi-source data association clustering method based on symmetric encryption algorithm is proposed. The multi-source data acquisition model is established, and the baud interval equalization sampling method is adopted to acquire data. The method of data generalization is applied to classify the collected data attributes optimally, which eliminates the fuzzy data. The symmetric encryption algorithm is used to shorten the range of data query. According to the centrosymmetry of data similarity measurement, multi-source data association clustering is realized. The proposed method can realize different types of data clustering, with high clustering accuracy and strong practical application value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source data density connection

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nguyen LTH, Wada T, Masubuchi I et al (2019) Bounded confidence gossip algorithms for opinion formation and data clustering. IEEE Trans Autom Control 64(3):1150–1155

    Article  MathSciNet  Google Scholar 

  2. Ashkartizabi M, Aminghafari M (2018) Functional data clustering using K-means and random projection with applications to climatological data. Stoch Env Res Risk Assess 32(1):83–104

    Article  Google Scholar 

  3. Fan W, Bouguila N, Bourouis S et al (2018) Entropy-based variational Bayes learning framework for data clustering. IET Image Proc 12(10):1762–1772

    Article  Google Scholar 

  4. Marek Ś, Hajto K, Tabor J (2019) Efficient mixture model for clustering of sparse high dimensional binary data. Data Min Knowl Disc 33(6):1583–1624

    Article  MathSciNet  Google Scholar 

  5. Bousbaci A, Kamel N (2018) Efficient data distribution and results merging for parallel data clustering in mapreduce environment. Appl Intell 48(8):2408–2428

    Article  Google Scholar 

  6. Dundar EB, Korkmaz EE (2018) Data clustering with stochastic cellular automata. Intelligent Data Analysis 22(4):735–750

    Article  Google Scholar 

  7. Rathore P, Kumar D, Bezdek JC et al (2019) A rapid hybrid clustering algorithm for large volumes of high dimensional data. IEEE Trans Knowl Data Eng 31(4):641–654

    Article  Google Scholar 

  8. Danesh M, Shirgahi H (2017) A novel hybrid knowledge of firefly and pso swarm intelligence algorithms for efficient data clustering. Journal of Intelligent and Fuzzy Systems 33:3529–3538

    Article  Google Scholar 

  9. Zheng Q, Diao X, Cao J et al (2020) From whole to part: Reference-based representation for clustering categorical data. IEEE Transactions on Neural Networks and Learning Systems 31(3):927–937

    Article  MathSciNet  Google Scholar 

  10. Yellamraju T, Boutin M (2018) Clusterability and clustering of images and other “Real” high-dimensional data. IEEE Trans Image Process 27(4):1927–1938

    Article  MathSciNet  Google Scholar 

  11. Kim K (2020) Identifying the structure of cities by clustering using a new similarity measure based on smart card data. IEEE Trans Intell Transp Syst 21(5):2002–2011

    Article  Google Scholar 

  12. Deng F (2017) Multiple hops network classification attribute data fuzzy clustering in the simulation. Computer Simulation 34(1):292–295

    Google Scholar 

  13. Wu J, Yuan J, Gao W (2019) Analysis of fractional factor system for data transmission in SDN. Applied Mathematics and Nonlinear Sciences 4:191–196

    Article  MathSciNet  Google Scholar 

  14. Lanbaran NM, Celik E, Yiider M (2020) Evaluation of investment opportunities with interval-valued fuzzy topsis method. Applied Mathematics and Nonlinear Sciences 5:461–474

    Article  MathSciNet  Google Scholar 

  15. Turner S, Kelvin LS, Baldry IK et al (2019) Reproducible k-means clustering in galaxy feature data from the GAMA survey. Mon Not R Astron Soc 482(1):126–150

    Article  Google Scholar 

  16. Benli FB, Ilhan OA, Keskin O (2020) An allee threshold model for a glioblastoma (GB)-immune system (IS) interaction with fuzzy initial values. Applied Mathematics and Nonlinear Sciences 5:499–508

    Article  MathSciNet  Google Scholar 

  17. Bacciu D, Castellana D (2019) Bayesian mixtures of hidden tree markov models for structured data clustering. Neurocomputing 342(21):49–59

    Article  Google Scholar 

  18. Barroso E, Villuendas Y, Yanez C (2018) Bio-inspired algorithms for improving mixed and incomplete data clustering. IEEE Lat Am Trans 16(8):2248–2253

    Article  Google Scholar 

  19. Marbac M, Sedki M (2017) Variable selection for model-based clustering using the integrated complete-data likelihood. Stat Comput 27(4):1049–1063

    Article  MathSciNet  Google Scholar 

  20. Shi K, Wang J, Tang Y, Zhong S (2020) Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies. Fuzzy Sets Syst 381:1–25

    Article  MathSciNet  Google Scholar 

  21. Wang X, Liu Y, Choo KR (2020) Fault tolerant multi-subset aggregation scheme for smart grid. IEEE Transac Industrial Inform 2020:1

  22. Zeng H, Teo KL, He Y, Wang W (2019) Sampled-data stabilization of chaotic systems based on a T-S fuzzy model. Inform Sciences 483:262–272

    Article  MathSciNet  Google Scholar 

  23. Simos TE, Tsitouras C (2020) Explicit, ninth order, two step methods for solving inhomogeneous linear problems x ’’(t) = Lambda x(t) plus f(t). Appl Numer Math 153:344–351

    Article  MathSciNet  Google Scholar 

  24. Li T, Zhang L, Lu W et al (2017) Interval kernel Fuzzy C-means clustering of incomplete data. Neurocomputing 237(10):316–331

    Article  Google Scholar 

  25. Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P (2020) Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE T Fuzzy Syst 2020:1

  26. Cao B, Fan S, Zhao J, Yang P, Muhammad K, Tanveer M (2020) Quantum-enhanced multiobjective large-scale optimization via parallelism. Swarm Evol Comput 57:100697

  27. Zeng H, Teo KL, He Y, Wang W (2019) Sampled-data-based dissipative control of T-S fuzzy systems. Appl Math Model 65:415–427

    Article  MathSciNet  Google Scholar 

  28. Liu Y, Yang C, Sun Q (2020) Thresholds based image extraction schemes in big data environment in intelligent traffic management. IEEE T Intell Transp 2020:1–9

  29. Liu Y, Yang C, Sun Q, Wu S, Lin S, Chou Y (2019) Enhanced embedding capacity for the SMSD-based data-hiding method. Signal Processing: Image Communication 78:216–222

    Google Scholar 

  30. Khlif A, Mignotte M (2017) Segmentation data visualizing and clustering. Multimedia Tools and Applications 76(1):1531–1552

    Article  Google Scholar 

  31. Ni T, Liu D, Xu Q, Huang Z, Liang H, Yan A (2020) Architecture of cobweb-based redundant TSV for clustered faults. IEEE T Vlsi Syst 28(7):1736–1739

    Article  Google Scholar 

  32. Ni T, Yao Y, Chang H, Lu L, Liang H, Yan A, Huang Z, Wen X (2020) LCHR-TSV: Novel low cost and highly repairable honeycomb-based TSV redundancy architecture for clustered faults. IEEE T Comput Aid D 39(10):2938–2951

    Article  Google Scholar 

  33. Wu T, Cao J, Xiong L, Zhang H (2019) New stabilization results for semi-markov chaotic systems with fuzzy sampled-data control. Complexity (New York, N.Y.) 2019:1–15

  34. Wu T, Xiong L, Cheng J, Xie X (2020) New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller. Inf Sci 521:231–250

    Article  MathSciNet  Google Scholar 

  35. Kovalnogov VN, Simos TE, Tsitouras C (2020) Ninth-order, explicit, two-step methods for second-order inhomogeneous linear IVPs. Mathematical methods in the applied sciences 43(7):4918–4926

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Multi Source Data Association Clustering Analysis Based on Symmetric Encryption Algorithm. Mobile Netw Appl 27, 1359–1367 (2022). https://doi.org/10.1007/s11036-022-01922-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-022-01922-w

Keywords