Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image segmentation plays an important role in the analysis of retinal images as the extraction of the optic disk provides important cues for accurate diagnosis of various retinopathic diseases. In recent years, gradient vector flow (GVF) based algorithms have been used successfully to successfully segment a variety of medical imagery. However, due to the compromise of internal and external energy forces within the resulting partial differential equations, these methods can lead to less accurate segmentation results in certain cases. In this paper, we propose the use of a new mean shift-based GVF segmentation algorithm that drives the internal/external energies towards the correct direction. The proposed method incorporates a mean shift operation within the standard GVF cost function to arrive at a more accurate segmentation. Experimental results on a large dataset of retinal images demonstrate that the presented method optimally detects the border of the optic disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Ghafar R, Morris T, Ritchings T, Wood I (2004) Detection and characterisation of the optic disk in glaucoma and diabetic retinopathy. In: Medical image understanding and analysis conference

  2. Balasubramanian S, Khanna S, Chadrasekaran V (2007) Localisation of optic disk using independent component analysis and modified structural similarity measure. In: IAPR conference on machine vision applications, pp 281–285

  3. Barrett S, Naess E, Molvik T (2001) Employing the hough transform to locate the optic disk. Biomed Sci Instrum 37:81–86

    Google Scholar 

  4. Biswas P, Pandit M (2002) Opti-GVF snake model for face segmentation from video sequences. In: Proc. of the third Indian conference on computer vision, graphics & image processing

  5. Bradski G (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal 2nd quarter

  6. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17:790–799

    Article  Google Scholar 

  7. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proc. of IEEE conf. on computer vision and pattern recognition, pp 142–149

  8. Herzog A, Boyer K, Roberts C (2005) Extracting the optic disk endpoints in optical coherence tomography data. In: IEEE workshop on applications of computer vision, vol 1, pp 263–268

  9. Ikram M, Borger P, Assink J, Jonas J, A Hofman M, de Jong P (2002) Comparing ophthalmoscopy, slide viewing, and semiautomated systems in optic disc morphometry. Ophthalmology 109(3):486–493

    Article  Google Scholar 

  10. Infeld D, O’Shea J (1998) Diabetic retinopathy. Postgraduate Med J 74:129–133

    Article  Google Scholar 

  11. Kande G, Venkata Subbaiah P, Satya Savithri T (2008) Segmentation of exudates and optic disk in retinal images. In: Proc. of sixth Indian conference on computer vision, graphics & image processing, pp 535–542

  12. Li C, Liu J, Fox M (2005) Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes. In: IEEE conf. on comput. vis. patter. rec., pp 162–167

  13. Li H, Chutatape O (2001) Automatic location of optic disk in retinal images. In: Proc. of international conference on image processing, pp 837–840

  14. Liu T, Zhou H, Lin F, Pang Y, Wu J (2008) Improving image segmentation by gradient vector flow and mean shift. Pattern Recogn Lett 29(1):90–95

    Article  Google Scholar 

  15. Mahfouz A, Fahmy A (2009) Ultrafast localization of the optic disc using dimensionality reduction of the search space. In: Medical image computing and computer-assisted intervention, pp 985–992

  16. Mayer-Base A (2004) Pattern recognition for medical imaging. Elsevier, Amsterdam

    Google Scholar 

  17. Mendels F, Heneghan C, Thiran JP (1999) Identification of the optic disk boundary in retinal images using active contours. In: Proc. of the Irish machine vision and image processing conference, pp 103–115

  18. Osareh A, Mirmehdi M, Thomas B, Markham R (2002) Comparison of colour spaces for optic disc localisation in retinal images. In: Proc. of international conference on pattern recognition, pp 743–746

  19. Pallawala P, Hsu W, Lee ML, Eong KGA (2004) Automated optic disc localization and contour detection using ellipse fitting and wavelet transform. In: European conference on computer vision, pp 139–151

  20. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46:223–247

    Article  MATH  Google Scholar 

  21. Patton N, Aslam T, MacGillivray T, Deary I, Dhillon B, Eikelboom R, Yogesan K, Constable I (2006) Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res 25:99–127

    Article  Google Scholar 

  22. Rigo W, Silva AD, Rauber T (2002) Semi-automatic identification of optic disk by image processing for quantitative funduscopy. In: Computer graphics and image processing. Brazilian Symposium, p 18

  23. Riordan-Eva P, Whitcher J (2007) Vaughan & Asbury’s genneral ophthalmology, 17th edn. McGraw-Hill, New York

    Google Scholar 

  24. Siddalingaswamy P, Prabhu K (2009) Automated detection of optic disc and exudates in retinal images. In: 13th international conference on biomedical engineering, pp 277–279

  25. Sinthanayothin C, Boyce J, Cook H, Williamson T (2008) Automated location of the optic disk in retinal images. J Biomed Sci Eng 2:90–95

    Google Scholar 

  26. Soares J, Leandro J, Cesar R, Jelinek H, Cree M (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag 25(9):1214–1222

    Article  Google Scholar 

  27. Staal J, Niemeijer A, Viergever M, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imag 23:501–509

    Article  Google Scholar 

  28. ter Haar F (2005) Automatic localization of the optic disc in digital colour images of the human retina. Master’s thesis, Utrecht University, Netherlands

  29. Tobin K, Chaum E, Govindasamy V, Karnowski T (2007) Detection of anatomic structures in human retinal imagery. IEEE Trans Med Imag 26(12):1729–1739

    Article  Google Scholar 

  30. Wang J, Thiesson B, Xu Y, Cohen M (2004) Image and video segmentation by anisotropic kernel mean shift. In: Proc. of European conference on computer vision, pp 238–249

  31. Witkin A, DTerzopoulos, Kass M (1987) Signal matching through scale space. Int J Comput Vis 1(2):133–144

    Article  Google Scholar 

  32. Xu C, Prince J (1997) Gradient vector flow: A new external force for snakes. In: Proc. of IEEE conf. computer vision and pattern recognition, pp 66–71

  33. Xu C, Prince J (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MATH  MathSciNet  Google Scholar 

  34. Xu J, Chutatape O, Sung E, Zheng C, Kuan P (2007) Optic disk feature extraction via modified deformable model technique for glaucoma analysis. Pattern Recogn 40(7):2063–2076

    Article  MATH  Google Scholar 

  35. Xu N, Ahuja N, Bansal R (2007) Object segmentation using graph cuts based active contours. Comput Vis Image Underst 107(3):210–224

    Article  Google Scholar 

  36. Zhou H, Liu T, Hu H, Pang Y, Lin F, Wu J (2005) A hybrid framework for image segmentation. In: Proc. of IEEE international conference on acoustics, speech, and signal processing, pp 749–752

  37. Zhu G, Zeng Q, Wang C (2006) Dual geometric active contour for image segmentation. Opt Eng 45(8):080,505

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Schaefer, G., Liu, T. et al. Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl 49, 447–462 (2010). https://doi.org/10.1007/s11042-009-0443-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0443-0

Keywords