Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An image division approach for volume ray casting in multi-threading environment

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

For an efficient parallel volume ray casting suitable for recent multi-core CPUs, we propose an image-ordered approach by using a cost function to allocate loaded tasks impartially per each processing node. At the first frame, we divide an image space evenly, and we compute a cost function. By applying the frame coherence property, we divide the image space unevenly using the computed previous cost function since the next frame. Conventional image-ordered parallel approaches have focused on dividing and compositing volume datasets. However, the divisions and accumulations are negligible for recent multi-core CPUs because they are performed inside one physical CPU. As a result, we can reduce the rendering time without deteriorating the image quality by applying a cost function reflecting on all time-consuming steps of the volume ray casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Challinger J (1993) Scalable parallel volume raycasting for nonrectilinear computational grids. In: Proceedings of the Parallel Rendering Symposium, pp 81–88

  2. Corrie B, Mackerras P (1993) Parallel volume rendering and data coherence. In: Proceedings of the Parallel Rendering Symposium, pp 23–26

  3. Crow FC (1984) Summed-area tables for texture mapping. In: Proceedings of the 11th annual conference on Computer graphics and interactive techniques (SIGGRAPH’84), pp 207–212

  4. Engel K, Weiskopf D, Rezk-salama C, Kniss J, Hadwiger M (2006) Real-time volume graphics, AK Peters, London

  5. Grimm S, Bruckner S, Kanitsar A, Gröller E (2004) A refined data addressing and processing scheme to accelerate volume ray-casting. Comput Graph 28(5):719–729

    Article  Google Scholar 

  6. Grimm S, Bruckner S, Kanitsar A, Gröller E (2004) Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data. In: Proceedings of the IEEE Volume Visualization, pp 1–8

  7. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M (2005) Real-time ray-casting and advanced shading of discrete isosurfaces. Comput Graph Forum 24(3):303–312

    Article  Google Scholar 

  8. Hsu W (1993) Segmented ray casting for data parallel volume rendering. In: Proceedings of the Parallel Rendering Symposium, pp 93–98

  9. Kaufman A (1994) Trends in volume visualization and volume graphics. In: L. Rosenblum et al (ed) Scientific Visualization: Advances and Challenges, 1st edn. Academic Press

  10. Law A, Yagel R (1996) Multi-frame thrashless ray casting with advancing ray-front. In: Proceedings of the Graphics Interfaces, pp 70–77

  11. Levoy M (1988) Display of surface from volume data. IEEE Comput Graph Appl 8(5):29–37

    Article  Google Scholar 

  12. Levoy M (1990) Efficient ray tracing of volume data. ACM Trans Graph 9(3):245–261

    Article  MATH  Google Scholar 

  13. Lim S, Shin BS (2004) Reliable space leaping using distance template. Lect Notes Eng Comput Sci 4487:505–512

    Article  Google Scholar 

  14. Lim S, Shin BS (2005) Efficient space-leaping using optimal block sets. IEICE Trans Info Syst 88(12):2864–2870

    Article  Google Scholar 

  15. Lim S, Shin BS (2007) A half-Skewed octree for CPU-based volume ray casting. IEICE Trans Info Syst 90(7):117–123

    Google Scholar 

  16. Lim S, Shin BS (2008) A distance template for octree traversal in CPU-based volume ray casting. Vis Comput 24(4):229–237

    Article  Google Scholar 

  17. Ma K (1995) Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures. In: Proceedings of the Parallel Rendering Symposium, pp 23–30

  18. Montani C, Perego R, Scopigno R (1992) Parallel volume visualization on a hypercube architecture. In: Proceedings of the Volume Visualization Symposium, pp 9–16

  19. Nieh J, Levoy M (1992) Volume rendering on scalable shared-memory MIMD architectures. In: Proceedings of the Volume Visualization Symposium, pp 17–24

  20. Park JS, Chung MS, Hwang SB, Lee YS, Har D, Park HS (2005) Visible korean human: improved serially sectioned images of the entire body. IEEE Trans Med Imaging 24(3):352–360

    Article  Google Scholar 

  21. Parker S, Shirley P, Livnat Y, Hansen C, Sloan P (1998) Interactive ray tracing for isosurface rendering. In: Proceedings of the IEEE Visualization, pp 233–238

  22. Whitman S (1993) A task adaptive parallel graphics renderer. In: Proceedings of the Parallel Rendering Symposium, pp 27–34

Download references

Acknowledgement

This work was supported by INHA UNIVERSITY Research Grant.

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (2011-0015779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-Seok Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Lee, D. & Shin, BS. An image division approach for volume ray casting in multi-threading environment. Multimed Tools Appl 68, 211–223 (2014). https://doi.org/10.1007/s11042-011-0879-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0879-x

Keywords