Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Image denoising using normal inverse gaussian model in quaternion wavelet domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel image denoising algorithm that can more effectively remove Gaussian white noise. The proposed algorithm is based on a design of a Maximum Posteriori Estimator (MAP) combined with a Quaternion Wavelet Transform (QWT) that utilizes the Normal Inverse Gaussian (NIG) Probability Density Function (PDF). The QWT is a near shift-invariant whose coefficients include one magnitude and three phase values. An NIG PDF which is specified by four real-value parameters is capable of modeling the heavy-tailed QWT coefficients, and describing the intra-scale dependency between the QWT coefficients. The NIG PDF is applied as a prior probability distribution, to model the coefficients by utilizing the Bayesian estimation technique. Additionally, a simple and fast method is given to estimate the parameters of the NIG PDF from the neighboring QWT coefficients. Experimental results show that the proposed method outperforms other existing denoising methods in terms of the PSNR, the structural similarity, and the edge preservation. It is clear that the proposed method can remove Gaussian white noise more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balster EJ, Zheng YF, Ewing RL (2005) Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans Image Process 14(12):2024–2039

    Article  Google Scholar 

  2. Bandorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modeling. Scand J Stat 24(3):1–13

    Google Scholar 

  3. Bayro-Corrochano E (2005) Multi-resolution image analysis using the quaternion wavelet transform. Numer Algorithm 39(4):35–55

    Article  MATH  MathSciNet  Google Scholar 

  4. Bharath A, Ng J (2005) A steerable complex wavelet construction and its application to image denoising. IEEE Trans Image Process 14(7):948–959

    Article  MathSciNet  Google Scholar 

  5. Buades A, Coll B, Morel JM (2006) A review of image denoising algorithms with a new one. Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  Google Scholar 

  6. Bulow T, Sommer G (1997) Multi-dimensional signal processing using an algebraically extended signal representation. Lect Notes Comput Sci 1315(8):148–163

    Article  Google Scholar 

  7. Chan WL, Choi H, Baraniuk RG (2008) Coherent multiscale image processing using dual-tree quaternion wavelets. IEEE Trans Image Process 17(7):1069–1082

    Article  MathSciNet  Google Scholar 

  8. Chang SG, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MATH  MathSciNet  Google Scholar 

  9. Chappelier V, Guillemot C (2006) Oriented wavelet transform for image compression and denoising. IEEE Trans Image Process 15(10):2892–2903

    Article  Google Scholar 

  10. Chen GY, Bui TD, Krzyzak A (2005) Image denoising with neighbour dependency and customoized wavelet and threshold. Pattern Recogn 38(1):115–124

    Article  Google Scholar 

  11. Chun FC, Yung CC (1996) Design of Wiener filters using a cumulant based MSE criterion. Signal Process 54(1):23–48

    Article  MATH  Google Scholar 

  12. Corrochano EB (2006) The theory and use of the quaternion wavelet transform. J Math Imaging Vision 24(2):19–35

    Article  MathSciNet  Google Scholar 

  13. Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. IEEE Trans Conf Comput Vision Pattern Recog 2:1124–1131

    Google Scholar 

  14. Cunha AL, Jianping Z, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  15. Dabov K, Foi A, Katkovnik V, Egiazarian KO (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–3745

    Article  MathSciNet  Google Scholar 

  16. Derrode S, Mercier G (2007) Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model. Pattern Recogn 40(3):1135–1147

    Article  MATH  Google Scholar 

  17. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    Article  MathSciNet  Google Scholar 

  18. Feng LY, Jin CH, Yi YY, Na Y (2012) Pectoral muscle segmentation in mammograms based on homogenous texture and intensity deviation. Pattern Recogn 46(3):681–691

    Google Scholar 

  19. Feng CS, Ming L, Wei Z, Zhuang LJ (2013) Edge preserving image denoising with a closed form solution. Pattern Recogn 46(3):976–988

    Article  Google Scholar 

  20. Gupta S, Chauhan RC, Saxena SC (2005) Locally adaptive wavelet domain Bayesian processor for denoising medical ultrasound images using Speckle modeling based on Rayleigh distribution. IEEE Trans Vision Image Signal Process 152(1):129–135

    Article  Google Scholar 

  21. Hamilton WR (1866) Elements of quaternions. Longmans, Green and Co, London

    Google Scholar 

  22. Huig Z, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280

    Article  Google Scholar 

  23. Hyvarinen A (1997) Sparse coding shrinkage: denoising of nongaussian data by maximum likelihodd estimation. Neural Comput 11(7):1739–1768

    Article  Google Scholar 

  24. Lefkimmiatis S, Maragos P, Papandreou G (2009) Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image desnoising. IEEE Trans Image Process 18(8):1724–1741

    Article  MathSciNet  Google Scholar 

  25. Luisier F, Blu T (2008) SURE-LET multichannel image denoising: interscale orthonormal wavelet thresholding. IEEE Trans Image Process 17(4):482–492

    Article  MathSciNet  Google Scholar 

  26. Miller M, Kingsbury N (2008) Image denoising using derotated complex wavelet coefficients. IEEE Trans Image Process 17(9):1500–1511

    Article  MathSciNet  Google Scholar 

  27. Mor E, Mayer A (2005) Boundary refinements for wavelet-domain multiscale texture segmentation. Image Vis Comput 23(13):1150–1158

    Article  Google Scholar 

  28. Moulin P, Liu J (1999) Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans Inf Theory 45(3):909–919

    Article  MATH  MathSciNet  Google Scholar 

  29. Naouai M, Hamouda A, Akkari A, Weber C (2011) New approach for road extraction from high resolution remotely sensed images using the quaternion wavelet. Pattern Recognit Image Anal 20(3):452–459

    Article  MathSciNet  Google Scholar 

  30. Nasir R, Irfan B (2012) A multiresolution framework for local similarity based on image denoising. Pattern Recogn 45(8):2938–2951

    Article  Google Scholar 

  31. Pennec L, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

  32. Po D, Do MN (2006) Directional multiscale modeling of images using the contourlet transform. IEEE Trans Image Process 15(6):1610–1620

    Article  MathSciNet  Google Scholar 

  33. Qiang GL, Ming Z (2011) Quaternion fourier-mellin moments for color images. Pattern Recogn 44(2):187–195

    Article  MATH  Google Scholar 

  34. Qiaofang L, Lixin S, Yuesheng X, Lihua Y (2011) Filters of wavelets on invariant sets for image denoising. Appl Anal 90(8):1299–1322

    MATH  MathSciNet  Google Scholar 

  35. Rajpoot N, Irfan B (2012) A multiresolution framework for local similarity based image denoising. Pattern Recogn 45(8):2938–2951

    Article  Google Scholar 

  36. Rakvongthai Y, Oraintara S (2010) Complex Gaussian scale mixtures of complex wavelet coefficients. IEEE Trans Signal Process 58(7):3545–3556

    Article  MathSciNet  Google Scholar 

  37. Raphan M, Simoncelli EP (2008) Optimal denoising in redundant representations. IEEE Trans Image Process 17(8):1342–1352

    Article  MathSciNet  Google Scholar 

  38. Richard C, Rainer M (2007) MAP estimator for speech enhancement under normal and rayleigh inverse gaussian distributions. IEEE TransAudio Speech Lang Process 15(3):918–927

    Article  Google Scholar 

  39. Ruikar SD, Doye DD (2011) Wavelet based image denoising techniqude. Int J Adv Comput Sci Appl 2(3):49–52

    Google Scholar 

  40. Sangwine SJ (1998) Color image edge detector based on quaternion convolution. IEEE Trans Electron Lett 34(10):969–971

    Article  Google Scholar 

  41. Sathyabama B, Anitha M, Raju S, Abhaikumar V (2011) Rotation invariant features for color texture classification and retrieval under varying illumination. Pattern Anal Applic 18(2):1–13

    Google Scholar 

  42. Shuyuan Y, Min W, Licheng J (2010) Quantum-inspired immune clone algorithm and multiscale Bandelet based image representation. Pattern Recogn Lett 31(13):1894–1902

    Article  Google Scholar 

  43. Soulard R, Philippe C (2011) Quaternion wavelets for texture classification. Pattern Recogn Lett 32(13):1669–1678

    Article  Google Scholar 

  44. Sumetphong C, Tangwongsan S (2012) Modeling broken characters recognition as a set-partitioning problem. Pattern Recogn Lett 16(1):2270–2279

    Article  Google Scholar 

  45. Todd AE, Stephen JS (2007) Hypercomplex fourier transforms of color images. IEEE Trans Image Process 16(1):22–35

    Article  MATH  MathSciNet  Google Scholar 

  46. Wang H, Wang XH, Zhou Y, Yang J (2006) Color texture segmentation using quaternion-gabor filters. IEEE Int Conf Image Process 2:745–748

    Google Scholar 

  47. Yingtao Z, Cheng HD, Jianhua H, Xianglong T (2012) An effective and objective criterion for evaluating the performance of denoising filters. Pattern Recogn 45(7):2743–2757

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (61202319, 61272077, 61203243, 61162002); Natural Science Foundation of Jiangxi (20114BAB201034, 20122BAB211025); China Postdoctoral Science Foundation under grant No.(2013 M530223, 2013 M530224); Department of Education of Jiangxi (GJJ13481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gai, S., Luo, L. Image denoising using normal inverse gaussian model in quaternion wavelet domain. Multimed Tools Appl 74, 1107–1124 (2015). https://doi.org/10.1007/s11042-013-1812-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1812-2

Keywords