Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient descriptor for full and partial shape matching

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper we present a new approach for full and partial shape retrieval based on a shape descriptor invariant to geometric transformations, reflection and deformation. The proposed description is a set of features that capture simultaneously global and local properties of the shape. To achieve the best matching, we propose a novel matching algorithm based on Dynamic Time Warping. The proposed method is evaluated in two cases: partial and full matching. The experimental results demonstrate that our approach outperforms existing methods of partial shape retrieval and gives comparable results for full shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adamek T, O’Connor NE (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Transactions On Circuits And Systems For Video Technology 14(5):742–754

    Article  Google Scholar 

  2. Adamek T, OConnor NE (2004) A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Transactions On Circuits And Systems For Video Technology 14(5)

  3. Alajlan N (2010) Fast shape matching and retrieval based on approximate dynamic space warping. Artificial Life and Robotics Journal 15, pp 309–315, Springer

  4. Alajlan N, El Rube I, Kamel MS, Freeman G (2007) Shape retrieval using triangle area representation and dynamic space warping. Pattern Recogn 40:1911–1920

    Article  MATH  Google Scholar 

  5. Alajlan N, El Rube I, Kamel MS, Freeman G Shape retrieval using triangle area representation and dynamic space warping. Pattern Recog 40(2007):1911–1920

  6. Andal FA, Miranda PAV, Torres RD, Falcao AX (2010) Shape feature extraction and description based on tensor scale. Pattern Recogn 43:26–36

    Article  MATH  Google Scholar 

  7. Atkinson J, Bober M (2000) Report on further optimization of the contour shape descriptor, in MPEG-7, ISO/IEC/JTC1/SC29/WG11/MPEG00/M6039, Geneva, Switzerland

  8. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24:509–522

    Article  Google Scholar 

  9. Belongie S, Malik J, Puzicha J Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(2002):509–522

  10. Berndt D, Clifford J (1994) Using dynamic time warping to find patterns in sequences. In: Proceedings of AAAI-94 workshop on knowledge discovery and databases, pp 229–248

  11. Cao1 Y, Zhang Z, Czogiel I, Dryden I, Wang S (2011) 2D Nonrigid partial shape matching using MCMC and contour subdivision. In: Proceeding of Computer vision and pattern recognition, pp 2345-2352

  12. Chen L, Feris R, Turk M (2008) Efficient partial shape matching using Smith-Waterman algorithm. In: Proceeding of computer vision and pattern recognition, pp 1–6

  13. Chetverikov D, Szabo Z s (1999) A simple and efficient algorithmfor detection of high curvature points in planar curves. In: Proceedings of 23rd workshop of the Austrian pattern recognition group, pp 175–184

  14. Cui M, Femiani J, Hu J, Wonka P, Razdan A (2009) Curve matching for open 2D curves. Pattern Recogn Lett 30:1–10

    Article  Google Scholar 

  15. Daliri MR, Torre V (2010) Shape recognition based on Kernel-edit distance. Comput Vis Image Underst 114:1097–1103

    Article  Google Scholar 

  16. Daliri MR, Torre V (2008) symbolic representation for shape recognition and retrieval. Pattern Recog 41:1782–1798

    Article  MATH  Google Scholar 

  17. Das G, Gunopoulos D, Mannila H (2003) Finding similar sequences. In: Proceedings of the 1st PKDD symposium, pp 88–100

  18. Demirci MF (2010) Efficient shape retrieval under partial matching. International Conference on Pattern Recognition

  19. Drew MS, Lee TK, Rova A Shape retrieval with eigen-CSS search. Image Vis Comput 27(2009):748–755

  20. Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290,4303

    Article  MathSciNet  Google Scholar 

  21. Gdalyahu Y, Weinshall D (1999) Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12):1313–1328

    Article  Google Scholar 

  22. Hu R-X., Jia W, Zhao Y, Gui J (2012) Perceptually motivated morphological strategies for shape retrieval. Pattern Recog 45:3222–3230

    Article  Google Scholar 

  23. Latecki LJ, Lakamper R (1999) Convexity rule for Shape decomposition based on discrete curve evolution. CVIU 73:441–454

    Google Scholar 

  24. Latecki L J, Lakomper R, Eckhardt U (2000) Shape descriptors for non-rigid shapes with a single closed contour. In: Computer vision and pattern recognition, pp 1424–1429

  25. Latecki LJ, Lakaemper R, Wolter D (2005) Optimal partial shape similarity. Image Vis Comput 23:227–236

    Article  Google Scholar 

  26. Latecki LJ, Megalooikonomou V, Wang Q, Lakaemper R, Ratanamahatana CA, Keogh E (2005) Partial elastic matching of time series. In: Proceedings of IEEE International Conference on Data Mining (ICDM05), pp 701–704, Houston, TX, USA

  27. Latecki LJ, Megalooikonomou V, Wang Q, Yu D (2007) An elastic partial shape matching technique. Pattern Recogn 40:3069–3080

    Article  MATH  Google Scholar 

  28. Lemuz-Lopez R, Estrada MA (2008). Ranking corner points by the angular difference between dominant edges. ICVS 2008, LNCS 5008, pp 323–332

  29. Ling H, Jacobs D W (2007) Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2):286–299

    Article  Google Scholar 

  30. Ling H, Jacobs D W (2007) Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2):286–299

    Article  Google Scholar 

  31. Ling H, Jacobs DW (2005) Using the inner-distance for classification of articulated shapes. CVPR

  32. Liu H, Latecki LJ, Liu W (2008) A unified curvature definition for regular, polygonal, and digital planar curves. Int J Comput Vis 80:104–124

    Article  Google Scholar 

  33. Liu W, Tao D (2013) Multiview Hessian regularization for image annotation. IEEE Trans Image Process 22 (7):2676,2687

    MathSciNet  Google Scholar 

  34. Liu W, Wang Y, Jia L (2010) An effective eye states detection method based on projection. In: IEEE 10th international conference on signal processing (ICSP)

  35. Mai F, Chang CQ, Hung YS (2010) Affine-invariant shape matching and recognition under partial occlusion. In: Proceedings IEEE international conference on image processing, Hong Kong, pp 26–29

  36. Michel D, Oikonomidis I, Argyros A (2011) Scale invariant and deformation tolerant partial shape matching. Image Vis Comput 29:459–469

    Article  Google Scholar 

  37. Mokhtarian F, Abbasi S, Kittler J (1996) Efficient and robust retrieval by shape content through curvature scale space. In: International workshop on image databases and multimedia search

  38. Mokhtarian F, Bober M (2003) Curvature Scale Space Representation: theory, applications, and MPEG-7 standardization. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  39. Mori G, Malik J (2003) Recognizing objects in adversarial clutter: breaking a visual CAPTCHA. CVPR I:1063–6919

    Google Scholar 

  40. Saber E, Xu Y, Tekalp AM (2005) Partial shape recognition by sub-matrix matching for partial matching guided image labeling. Pattern Recogn 38:1560–1573

    Article  Google Scholar 

  41. Sakoe H, Chiba S (1971) A dynamic programming approach to continuous speech recognition. In: Proceedings of the 7th international congress on acoustics, Budapest

  42. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49

    Article  MATH  Google Scholar 

  43. Sarfraz M, Masood A, Asim MR (2006) A new approach to corner detection. Computer Vision and Graphics 32:528–533

    Article  Google Scholar 

  44. Schmidt FR, Farin D, Cremers D (2007) Fast matching of planar shapes in sub-cubic runtime. In: Proceedings of the IEEE international conference on computer vision, ICCV, pp 1–6

  45. Veltkamp R C, Tanase M (2005) Part-based shape retrieval. In: Proceedings ACM multimedia, pp 543–546

  46. Vlachos M, Hadjieleftheriou M, Gunopulos D, Keogh E (2003) Indexing multidimensional time-series with support for multiple distance measures. In: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 216–225

  47. Xiea J, Hengb h-A, Shah M Shape matching and modeling using skeletal context. Pattern Recog 41(2008):1756–1767

  48. Yang X (2009) Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 357–364

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Larabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouagar, S., Larabi, S. Efficient descriptor for full and partial shape matching. Multimed Tools Appl 75, 2989–3011 (2016). https://doi.org/10.1007/s11042-014-2417-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2417-0

Keywords