Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Age estimation based on improved discriminative Gaussian process latent variable model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Affected by various factors (genes, living habits and so on), different people present distinct aging patterns. To discover the underlying trend of aging patterns, we propose an effective age estimation method based on DGPLVM (Discriminative Gaussian Process Latent Variable Model). DGPLVM is a kind of discriminative latent variable method for manifold learning. It discovers the low-dimensional manifold by employing a discriminative prior distribution over the latent space. DGPLVM with KFDA (Kernel Fisher Discriminant Analysis) prior has been studied and successfully applied to face verification. Different with face verification which is a two-class problem, age estimation is a linearly inseparable multi-class problem. In this paper, DGPLVM with KFDA is reformulated to get the low-dimensional representations for age estimation. After low-dimensional representations are obtained, Gaussian process regression model is adopted to find the age regressor mapping low-dimensional representations to ages. Experimental results on two widely used databases FG-NET and MORPH show that reformulated DGPLVM with KFDA is a good application in age estimation and achieves comparable results to state-of-the arts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang KY, Chen CS, Hung YP (2010) A ranking approach for human ages estimation based on face images.. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR) , pp 3396–3399

  2. Chang KY, Chen CS, Hungm YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation.. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 585–592

  3. Chen K, Gong S, Xiang T, Loy CC (2013) Cumulative attribute space for age and crowd density estimation.. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 2467–2474

  4. Fu Y, Huang TS (2008) Human age estimation with regression on discriminative aging manifold. IEEE Trans Multimedia 10(4):578–584

    Article  Google Scholar 

  5. Fu Y, Xu Y, Huang TS (2007) Estimating human age by manifold analysis of face pictures and regression on aging features.. In: Proceedings of IEEE Conference on Multimedia and Expo (ICME) , pp 1383–1386

  6. Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29(12):2234–2240

    Article  Google Scholar 

  7. Guo G, Mu G (2010) Human age estimation: What is the influence across race and gender?. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 71–78

  8. Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 657–664

  9. Guo G, Fu Y, Dyer CR, Huang TS (2008a) Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans on Image Process 17(7):1178–1188

    Article  MathSciNet  Google Scholar 

  10. Guo G, Fu Y, Dyer CR, Huang TS (2008b) A probabilistic fusion approach to human age prediction.. In: Proceedings of IEEE computer society conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1–6

  11. Guo G, Mu G, Fu Y, Dyer C, Huang T (2009a) A study on automatic age estimation using a large database.. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) , pp 1986–1991

  12. Guo G, Mu G, Fu Y, Huang TS (2009b) Human age estimation using bio-inspired features.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 112–119

  13. Kim SJ, Magnani A, Boyd S (2006) Optimal kernel selection in kernel fisher discriminant analysis.. In: Proceedings of the 23rd international conference on Machine learning, ACM, pp 465–472

  14. Kwon N, da Vitoria Lobo YH (1999) Age classification from facial images. Comput Vis Image Underst 74(1):1–21

    Article  Google Scholar 

  15. Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. IEEE Trans Pattern Anal Mach Intell 24(4):442–455

    Article  Google Scholar 

  16. Lanitis A, Draganova C, Christodoulou C (2004) Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern Part B Cybern 34(1):621–628

    Article  Google Scholar 

  17. Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv in Neural Inf Proc Sys 16:329–336

    MathSciNet  Google Scholar 

  18. Li C, Liu Q, Liu J, Lu H (2012) Learning ordinal discriminative features for age estimation.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 2570–2577

  19. Lu C, Tang X (2015) Surpassing human-level face verification performance on lfw with gaussianface. In: The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI)

  20. Ma W, Huang L, Liu C (2008) Advanced local binary pattern descriptors for crowd estimation.. In: Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA), vol 2, pp 958–962

  21. Matthews I, Baker S (2004) Active appearance models. Int J Comput Vision 57(2):137–154

    Article  Google Scholar 

  22. MF Møller (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533

    Article  Google Scholar 

  23. Rasmussen CE (2006) Gaussian processes for machine learning. The MIT Press

  24. Ren H, Li ZN (2015) Age estimation based on complexity-aware features.. In: Computer Vision–ACCV 2014, Springer, pp 115–128

  25. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press

  26. Urtasun R, Darrell T (2007) Discriminative gaussian process latent variable model for classification.. In: Proceedings of International Conference on Machine Learning (ICML), pp 927–934

  27. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57(2):137–154

    Article  Google Scholar 

  28. Yan S, Wang H, Huang TS, Yang Q, Tang X, 2007a Ranking with uncertain labels.. In: Proceedings of IEEE Conference on Multimedia and Expo (ICME), pp 96–99

  29. Yan S, Wang H, Tang X, Huang TS (2007b) Learning auto-structured regressor from uncertain nonnegative labels.. In: Proceedings of IEEE Conference on Computer Vision (ICCV), pp 1–8

  30. Yan S, Zhou X, Liu M, Hasegawa-Johnson M, Huang TS (2008) Regression from patch-kernel.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8

  31. Yang P, Zhong L, Metaxas D (2010) Ranking model for facial age estimation.. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR), pp 3404–3407

  32. Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 2622–2629

  33. Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm.. In: Proceedings of the British Machine Vision Conference (BMVC), pp 1–12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Cai.

Appendix A: Derivations of (18) and (21)

Appendix A: Derivations of (18) and (21)

Given (14),

$$J(\boldsymbol{w} )=\frac{\boldsymbol{w}^{\mathrm{T}}S_{b}\boldsymbol{w}}{\boldsymbol{w}\left( S_{w}+\lambda I_{n}\right)\boldsymbol{w}} $$

According to fisher discriminative analysis, the best projection direction w satisfies S b w =α(S w +λ I n )w . Assuming the samples are centralized, i.e. μ=0, then

$$\begin{array}{@{}rcl@{}} S_{b}\boldsymbol{w}^{\ast}&=&\sum\limits_{c=1}^{C} \frac{n_{c}}{n}\left( \boldsymbol{\mu}_{c}-\boldsymbol{\mu}\right)\left( \boldsymbol{\mu}_{c}- \boldsymbol{\mu}\right)^{\mathrm{T}\boldsymbol{w}^{\ast}}\\ &=&\sum\limits_{c=1}^{C} \frac{n_{c}}{n}\boldsymbol{\mu}_{c}\boldsymbol{\mu}_{c}^{\mathrm{T}\boldsymbol{w}^{\ast}} \end{array} $$
(32)

Let \(U_{c} = \left [\phi \left (\boldsymbol {z}_{1}^{(c)}\right ),\cdots ,\phi \left (\boldsymbol {z}_{n_{c}}^{(c)}\right )\right ]\), U=[U 1,⋯ ,U C ], then

$$\begin{array}{@{}rcl@{}} \boldsymbol{w}^{\ast} &=& \left( S_{w}+\lambda I_{n}\right)^{-1}S_{b}\boldsymbol{w}^{\ast}\\ &=& \left( S_{w}+\lambda I_{n}\right)^{-1}\sum\limits_{c=1}^{C}{U_{c}}\frac{1}{n_{c}}\mathbf{1}_{n_{c}}\\ &=& \left( S_{w}+\lambda I_{n}\right)^{-1}U \boldsymbol{a} \end{array} $$
(33)

where \(\boldsymbol {a} = \left [\frac {1}{n_{1}}\mathbf {1}_{n_{1}}^{\mathrm {T}},\cdots ,\frac {1}{n_{C}} \mathbf {1}_{n_{C}}^{\mathrm {T}}\right ]^{\mathrm {T}}\). Considering \(S_{w} = {\sum }_{c=1}^{C} P_{c}\varSigma _{c}, P_{c} = \frac {n_{c}}{n}\), then

$$\begin{array}{@{}rcl@{}} \varSigma_{c} &=& \frac{1}{n_{c}}\sum\limits_{i=1}^{n_{c}}\left( \phi\left( \boldsymbol{z}_{i}^{(c)}\right)-\boldsymbol{\mu}_{c}\right)\left( \phi\left( \boldsymbol{z}_{i}^{(c)}\right)-\mu_{c}\right)^{\mathrm{T}}\\ &=& \frac{1}{n_{c}}\sum\limits_{i=1}^{n_{c}}\phi\left( \boldsymbol{z}_{i}^{(c)}\right)\phi\left( \boldsymbol{z}_{i}^{(c)}\right)^{\mathrm{T}}-\boldsymbol{\mu}_{c}\boldsymbol{\mu}_{c}^{\mathrm{T}}\\ &=&\frac{1}{n_{c}}U_{c}U_{c}^{\mathrm{T}}-\frac{1}{n_{c}^{2}}U_{c}\mathbf{1}_{n_{c}}\mathbf{1}_{n_{c}}^{\mathrm{T}}U_{c}^{\mathrm{T}}\\ &=& U_{c}J_{c}J_{c}U_{c}^{\mathrm{T}} \end{array} $$
(34)

where \(J_{c} = \frac {1}{\sqrt {n_{c}}}\left (I_{n_{c}}-\frac {1}{n_{c}}\mathbf {1}_{n_{c}}\mathbf {1}_{n_{c}}^{\mathrm {T}}\right )\). Let

$$\begin{array}{@{}rcl@{}} A_{c} = \sqrt{P_{c}}J_{c} &=& \frac{\sqrt{n_{c}}}{\sqrt{n}}J_{c} = \frac{1}{\sqrt{n}}\left( I_{n_{c}}-\mathbf{1}_{n_{c}}\mathbf{1}_{n_{c}}^{\mathrm{T}}\right)\\ A &=& \left( \begin{array}{lll} A_{1} & &\\ &\ddots&\\ & &A_{C} \end{array}\right) \end{array} $$
(35)

then

$$\begin{array}{@{}rcl@{}} S_{w} &=& \sum\limits_{c=1}^{C}P_{c}\varSigma_{c}\\ &=&\sum\limits_{c=1}^{C}P_{c}U_{c}J_{c}J_{c}U_{c}^{\mathrm{T}}\\ &=&\sum\limits_{c=1}^{C}U_{c}\sqrt{P_{c}}J_{c}\sqrt{P_{c}}J_{c}U_{c}^{\mathrm{T}}\\ &=&\sum\limits_{c=1}^{C}U_{c}A_{c}A_{c}U_{c}^{\mathrm{T}}\\ &=&UAAU^{\mathrm{T}} \end{array} $$
(36)

According to Woodbury identity,

$$\begin{array}{@{}rcl@{}} \left( S_{W}+\lambda I_{n}\right)^{-1}&=&\left( \lambda I_{n}+UAAU^{\mathrm{T}}\right)^{-1}\\ &=&\frac{1}{\lambda}\left[I_{n}-UA\left( \lambda I_{n}+AU^{\mathrm{T}}UA\right)^{-1}AU^{\mathrm{T}}\right] \end{array} $$
(37)

Combining with equation (A.3), we have

$$\begin{array}{@{}rcl@{}} \boldsymbol{w}^{\ast}&=& \left( S_{w}+\lambda I_{n}\right)^{-1}Ua\\ &=& \frac{1}{\lambda}\left[I_{n}-UA\left( \lambda I_{n}+AU^{\mathrm{T}}UA\right)^{-1}AU^{\mathrm{T}}\right]\\ &=& U\frac{1}{\lambda}\left[I_{n}-A\left( \lambda I_{n}+AGA\right)^{-1}AG\right]\boldsymbol{a} \end{array} $$
(38)

Considering both (38) and (16), a (18) can be obtained

$$ \boldsymbol{a}^{\ast} = \frac{1}{\lambda}\left[I_{n}-A\left( \lambda I_{n}+AGA\right)^{-1}AG\right]\boldsymbol{a} $$
(39)

For S b ,

$$\begin{array}{@{}rcl@{}} S_{b} &=& \sum\limits_{c=1}^{C}\frac{n_{c}}{n}\boldsymbol{\mu}_{c}\boldsymbol{\mu}_{c}^{\mathrm{T}}\\ &=& \sum\limits_{c=1}^{C}\frac{n_{c}}{n}U_{c}\frac{1}{n_{c}}\mathbf{1}_{n_{c}}\left( U_{c}\frac{1}{n_{c}}\mathbf{1}_{n_{c}}\right)^{\mathrm{T}}\\ & =& \sum\limits_{c=1}^{C} U_{c}\frac{1}{nn_{c}}\mathbf{1}_{n_{c}}\mathbf{1}_{n_{c}}^{\mathrm{T}}U_{c}^{\mathrm{T}}\\ & =& UWU^{\mathrm{T}} \end{array} $$
(40)

where

$$\begin{array}{@{}rcl@{}} W &=& \left( \begin{array}{lll} W_{1} & &\\ &\ddots&\\ & &W_{C} \end{array}\right)\\ W_{c} &=& \frac{1}{nn_{c}}\boldsymbol{1}_{n_{c}}\boldsymbol{1}_{n_{c}}^{\mathrm{T}} \end{array} $$
(41)

Plugging S b ,S w ,w into (14), J is obtained

$$\begin{array}{@{}rcl@{}} J^{\ast}&=&\frac{\boldsymbol{w}^{\ast\mathrm{T}}S_{b}\boldsymbol{w}^{\ast}}{\boldsymbol{w}^{\ast\mathrm{T}}\left( S_{w}+\lambda I_{n}\right)\boldsymbol{w}^{\ast}}\\ &=&\frac{\boldsymbol{a}^{\ast\mathrm{T}}GWG\boldsymbol{a}^{\ast}}{\boldsymbol{a}^{\ast\mathrm{T}}\left( GAAG+\lambda G\right)\boldsymbol{a}^{\ast}} \end{array} $$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Huang, L. & Liu, C. Age estimation based on improved discriminative Gaussian process latent variable model. Multimed Tools Appl 75, 11977–11994 (2016). https://doi.org/10.1007/s11042-015-2668-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2668-4

Keywords