Abstract
Affected by various factors (genes, living habits and so on), different people present distinct aging patterns. To discover the underlying trend of aging patterns, we propose an effective age estimation method based on DGPLVM (Discriminative Gaussian Process Latent Variable Model). DGPLVM is a kind of discriminative latent variable method for manifold learning. It discovers the low-dimensional manifold by employing a discriminative prior distribution over the latent space. DGPLVM with KFDA (Kernel Fisher Discriminant Analysis) prior has been studied and successfully applied to face verification. Different with face verification which is a two-class problem, age estimation is a linearly inseparable multi-class problem. In this paper, DGPLVM with KFDA is reformulated to get the low-dimensional representations for age estimation. After low-dimensional representations are obtained, Gaussian process regression model is adopted to find the age regressor mapping low-dimensional representations to ages. Experimental results on two widely used databases FG-NET and MORPH show that reformulated DGPLVM with KFDA is a good application in age estimation and achieves comparable results to state-of-the arts.
Similar content being viewed by others
References
Chang KY, Chen CS, Hung YP (2010) A ranking approach for human ages estimation based on face images.. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR) , pp 3396–3399
Chang KY, Chen CS, Hungm YP (2011) Ordinal hyperplanes ranker with cost sensitivities for age estimation.. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 585–592
Chen K, Gong S, Xiang T, Loy CC (2013) Cumulative attribute space for age and crowd density estimation.. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 2467–2474
Fu Y, Huang TS (2008) Human age estimation with regression on discriminative aging manifold. IEEE Trans Multimedia 10(4):578–584
Fu Y, Xu Y, Huang TS (2007) Estimating human age by manifold analysis of face pictures and regression on aging features.. In: Proceedings of IEEE Conference on Multimedia and Expo (ICME) , pp 1383–1386
Geng X, Zhou ZH, Smith-Miles K (2007) Automatic age estimation based on facial aging patterns. IEEE Trans Pattern Anal Mach Intell 29(12):2234–2240
Guo G, Mu G (2010) Human age estimation: What is the influence across race and gender?. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 71–78
Guo G, Mu G (2011) Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 657–664
Guo G, Fu Y, Dyer CR, Huang TS (2008a) Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans on Image Process 17(7):1178–1188
Guo G, Fu Y, Dyer CR, Huang TS (2008b) A probabilistic fusion approach to human age prediction.. In: Proceedings of IEEE computer society conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 1–6
Guo G, Mu G, Fu Y, Dyer C, Huang T (2009a) A study on automatic age estimation using a large database.. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) , pp 1986–1991
Guo G, Mu G, Fu Y, Huang TS (2009b) Human age estimation using bio-inspired features.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 112–119
Kim SJ, Magnani A, Boyd S (2006) Optimal kernel selection in kernel fisher discriminant analysis.. In: Proceedings of the 23rd international conference on Machine learning, ACM, pp 465–472
Kwon N, da Vitoria Lobo YH (1999) Age classification from facial images. Comput Vis Image Underst 74(1):1–21
Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face images. IEEE Trans Pattern Anal Mach Intell 24(4):442–455
Lanitis A, Draganova C, Christodoulou C (2004) Comparing different classifiers for automatic age estimation. IEEE Trans Syst Man Cybern Part B Cybern 34(1):621–628
Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv in Neural Inf Proc Sys 16:329–336
Li C, Liu Q, Liu J, Lu H (2012) Learning ordinal discriminative features for age estimation.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 2570–2577
Lu C, Tang X (2015) Surpassing human-level face verification performance on lfw with gaussianface. In: The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI)
Ma W, Huang L, Liu C (2008) Advanced local binary pattern descriptors for crowd estimation.. In: Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA), vol 2, pp 958–962
Matthews I, Baker S (2004) Active appearance models. Int J Comput Vision 57(2):137–154
MF Møller (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533
Rasmussen CE (2006) Gaussian processes for machine learning. The MIT Press
Ren H, Li ZN (2015) Age estimation based on complexity-aware features.. In: Computer Vision–ACCV 2014, Springer, pp 115–128
Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge university press
Urtasun R, Darrell T (2007) Discriminative gaussian process latent variable model for classification.. In: Proceedings of International Conference on Machine Learning (ICML), pp 927–934
Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57(2):137–154
Yan S, Wang H, Huang TS, Yang Q, Tang X, 2007a Ranking with uncertain labels.. In: Proceedings of IEEE Conference on Multimedia and Expo (ICME), pp 96–99
Yan S, Wang H, Tang X, Huang TS (2007b) Learning auto-structured regressor from uncertain nonnegative labels.. In: Proceedings of IEEE Conference on Computer Vision (ICCV), pp 1–8
Yan S, Zhou X, Liu M, Hasegawa-Johnson M, Huang TS (2008) Regression from patch-kernel.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8
Yang P, Zhong L, Metaxas D (2010) Ranking model for facial age estimation.. In: Proceedings of 20th International Conference on Pattern Recognition (ICPR), pp 3404–3407
Zhang Y, Yeung DY (2010) Multi-task warped gaussian process for personalized age estimation.. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp 2622–2629
Zhou H, Miller PC, Zhang J (2011) Age classification using radon transform and entropy based scaling svm.. In: Proceedings of the British Machine Vision Conference (BMVC), pp 1–12
Author information
Authors and Affiliations
Corresponding author
Appendix A: Derivations of (18) and (21)
Appendix A: Derivations of (18) and (21)
Given (14),
According to fisher discriminative analysis, the best projection direction w ∗ satisfies S b w ∗=α(S w +λ I n )w ∗. Assuming the samples are centralized, i.e. μ=0, then
Let \(U_{c} = \left [\phi \left (\boldsymbol {z}_{1}^{(c)}\right ),\cdots ,\phi \left (\boldsymbol {z}_{n_{c}}^{(c)}\right )\right ]\), U=[U 1,⋯ ,U C ], then
where \(\boldsymbol {a} = \left [\frac {1}{n_{1}}\mathbf {1}_{n_{1}}^{\mathrm {T}},\cdots ,\frac {1}{n_{C}} \mathbf {1}_{n_{C}}^{\mathrm {T}}\right ]^{\mathrm {T}}\). Considering \(S_{w} = {\sum }_{c=1}^{C} P_{c}\varSigma _{c}, P_{c} = \frac {n_{c}}{n}\), then
where \(J_{c} = \frac {1}{\sqrt {n_{c}}}\left (I_{n_{c}}-\frac {1}{n_{c}}\mathbf {1}_{n_{c}}\mathbf {1}_{n_{c}}^{\mathrm {T}}\right )\). Let
then
According to Woodbury identity,
Combining with equation (A.3), we have
Considering both (38) and (16), a ∗ (18) can be obtained
For S b ,
where
Plugging S b ,S w ,w ∗ into (14), J ∗ is obtained
Rights and permissions
About this article
Cite this article
Cai, L., Huang, L. & Liu, C. Age estimation based on improved discriminative Gaussian process latent variable model. Multimed Tools Appl 75, 11977–11994 (2016). https://doi.org/10.1007/s11042-015-2668-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-015-2668-4