Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action recognition based on hierarchical dynamic Bayesian network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel action recognition method is proposed based on hierarchical dynamic Bayesian network (HDBN). The algorithm is divided into system learning stage and action recognition stage. In the stage of system learning, the video features are extracted using deep neural networks firstly, and using hierarchical clustering and assisting manually, a hierarchical action semantic dictionary (HASD) is built. The next, we construct the HDBN graph model to present video sequence. In the stage of recognition, we first get the representative frames of unknown video using deep neural networks. The features are inputted into the HDBN, and the HDBN inference is used to get recognition results. The testing results show the proposed method is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: ECCV, 404–417

  2. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23(3):257–267

    Article  Google Scholar 

  3. Chaaraoui AA, Climent-Pérez P, Flórez-Revuelta F (2013) Silhouette-based human action recognition using sequences of key poses. Pattern Recogn Lett 34(15):1799–1807

    Article  Google Scholar 

  4. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. CVPR 1:886–893

    Google Scholar 

  5. Do T-M-T, Artieres T (2010) Neural conditional random fields. In: Proceedings of the 13th international conference on artificial intelligence and statistics, vol. 9, pp 177–184

  6. Efros AA, Berg AC, Mori G, Malik J (2003) Recognizing action at a distance. In: ICCV 2003, Nice, France, 726–733

  7. Farzad H, Babette D, Carme T (2016) Action recognition based on efficient deep feature learning in the spatio-temporal domain. IEEE Robotics and Automation Letters 1(2):984–991

    Article  Google Scholar 

  8. Gorelick L, Blank M, Shechtman E, Irani M, Basri R (2005) Actions as space–time shapes. In: IEEE ICCV, 1395–1402

  9. Gross JL, Yellen J (2011) Graph theory and its applications, 2nd edn. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  10. Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New York

    Google Scholar 

  11. Hoai M, Lan Z-Z, Dela Torre F (2011) Joint segmentation and classification of human actions in video. In: CVPR, 3265–3272

  12. Hongzhao C, Wang G, Xue J-H, He L (2016) A novel hierarchical framework for human action recognition. Pattern Recogn 55:148–159

    Article  Google Scholar 

  13. Jhuang H, Serre T, Wolf L, Poggio T (2007) A biologically inspired system for action recognition. In: ICCV, 1–8

  14. Kong Y, Behnam S, Yun F (2016) Learning hierarchical 3D kernel descriptors for RGB-D action recognition. Comput Vision Image Underst 144:14–23

    Article  Google Scholar 

  15. Lafferty J, Mccallum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp 282-289

  16. Lafferty J, Zhu X, Liu Y (2004) Kernel conditional random fields: representation and clique selection. In: ICML

  17. Laptev I (2005) On space–time interest points. Int J Comput Vis 64(2–3):107–123

    Article  Google Scholar 

  18. Le QV, Zou WY, Yeung SY, Ng AY (2011) Learning hierarchical in variant spatio- temporal features for action recognition within dependent subspace analysis. CVPR, In, pp 3361–3368

  19. Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54(10):95–103

    Article  Google Scholar 

  20. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos in the wild. In: CVPR

  21. Liu J, Yang Y, Sha M (2009) Learning semantic visual vocabularies using diffusion distance. In: CVPR, 461–468

  22. Liu CH, Liu J, He ZC, Zhai YJ, Hu QH, Huang YL (2016) Convolutional neural random fields for action recognition. Pattern Recognition 59:213–224

    Article  Google Scholar 

  23. Ni B, Pei Y, Liang Z, Lin L, Moulin P (2013) Integrating multi-stage depth-induced contextual information for human action recognition and localization. In: IEEE international conference and workshops on automatic face and gesture recognition, pp 1–8

  24. Paul IE, Mohan CK (2016) Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recogn 59:199–212

    Article  Google Scholar 

  25. Shen H, Yan Y, Xu S, Ballas N, Chen W (2015) Evaluation of semi-supervised learning method on action recognition. Multimedia Tools and Applications 74(2):523–542

    Article  Google Scholar 

  26. Sminchisescu C, Kanaujia A, Metaxas D (2006) Conditional models for contextual human motion recognition. Comput Vis Image Underst 104(2–3):210–220

    Article  Google Scholar 

  27. Walker J, Gupta A, Hebert M Dense optical flow prediction from a static image, arXiv preprint arXiv: 1505.00295

  28. Weinland D, Ronfard R, Boyer E (2011) A survey of vision-based methods for action representation, segmentation and recognition. Comput Vis Image Underst 115(2):224–241

    Article  Google Scholar 

  29. Wenwen D, Kai L, Xujia F, Cheng F (2016) Profile HMMs for skeleton-based human action recognition. Signal Process Image Commun 42:109–119

    Article  Google Scholar 

  30. Wolf W (1996) Key frame selection bymotion analysis. Atlanta: Rodney Andrew Kennedy Inc 2:1228–1231

    Google Scholar 

  31. Xiaofei J, Zhaojie J, Wang C, Wang C (2016) Muti-view transition HMMs based view-invariant human action recognition method. Multimedia Tools and Applications 75(19):11847–11864

    Article  Google Scholar 

  32. Yang Y, Lin M (2016) Human action recognition with graph-based multiple-instance learning. Pattern Recognition 53:148–162

    Article  Google Scholar 

  33. Yang Q, Xue D-y, Jian-jiang C (2012) Human action recognition using dynamic bayesian network. International Journal of Advancements in Computing Technology 4(12):291–298

    Google Scholar 

  34. Zhang Z, Hu Y, Chan S, Chia L-T (2008) Motion context: a new representation for human action recognition. In: ECCV, 817–829

  35. Zhou F, De la Torre F, Hodgins JK (2013) Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans Pattern Anal Mach Intell 35(3):582–596

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the project (61271362, 61671362) of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinkun Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Song, R. Action recognition based on hierarchical dynamic Bayesian network. Multimed Tools Appl 77, 6955–6968 (2018). https://doi.org/10.1007/s11042-017-4614-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4614-0

Keywords