Abstract
Dimensionality reduction is a great challenge in high dimensional unlabelled data processing. The existing dimensionality reduction methods are prone to employing similarity matrix and spectral clustering algorithm. However, the noises in original data always make the similarity matrix unreliable and degrade the clustering performance. Besides, existing spectral clustering methods just focus on the local structures and ignore the global discriminative information, which may lead to overfitting in some cases. To address these issues, a novel unsupervised 2-dimensional dimensionality reduction method is proposed in this paper, which incorporates the similarity matrix learning and global discriminant information into the procedure of dimensionality reduction. Particularly, the number of the connected components in the learned similarity matrix is equal to cluster number. We compare the proposed method with several 2-dimensional unsupervised dimensionality reduction methods and evaluate the clustering performance by K-means on several benchmark data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.
Similar content being viewed by others
References
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396
Boyd S, Vandenberghe L (2013) Faybusovich: convex optimization. IEEE Trans Autom Control 51(11):1859–1859
Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637
Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: ACM SIGKDD, p 333–342
Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2582746
Chang X, Nie F, Ma Z, Yang Y, Zhou X (2015) A convex formulation for spectral shrunk clustering
Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513. doi:10.1109/TNNLS.2015.2441735
Chang X, Nie F, Yang Y, Huang H (2016) A convex sparse PCA for feature analysis. ACM Trans Knowl Discov Data 11(1):3:1–3:16
Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920. doi:10.1109/TIP.2017.2708506
Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197. doi:10.1109/TCYB.2016.2539546
Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632. doi:10.1109/TPAMI.2016.2608901
Chung FR (1997) Spectral graph theory. American Mathematical Society
Dong X, Huang H, Wen H (2010) A comparative study of several face recognition algorithms based on pca. In: ISCSCT, p 443
Du L, Shen YD (2015) Unsupervised feature selection with adaptive structure learning. In: ACM SIGKDD. ACM, p 209–218
Fan M, Chang X, Tao D (2017) Structure regularized unsupervised discriminant feature analysis
Gao L, Song J, Liu X, Shao J, Liu J, Shao J (2015) Learning in high-dimensional multimedia data: the state of the art. Multimedia Systems 21:1–11
Gao L, Song J, Nie F, Yan Y, Sebe N, Heng TS (2015) Optimal graph learning with partial tags and multiple features for image and video annotation. In: The IEEE conference on computer vision and pattern recognition (CVPR)
He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340
He X, Ji M, Zhang C, Bao H (2011) A variance minimization criterion to feature selection using laplacian regularization. IEEE Trans Pattern Anal Mach Intell 33(10):2013–2025
Hu D, Feng G, Zhou Z (2007) Two-dimensional locality preserving projections (2dlpp) with its application to palmprint recognition. Pattern Recogn 40(1):339–342
Kadir SN, Goodman DF, Harris KD (2014) High-dimensional cluster analysis with the masked em algorithm. Neural Comput 26(11):2379–2394
Kambhatla N, Leen TK (1997) Dimension reduction by local pca. Neural Computation
Kodirov E, Xiang T, Fu Z, Gong S (2016) Learning robust graph regularisation for subspace clustering. British Machine Vision Conference
Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156
Fan K (1950) On a theorem of weyl concerning eigenvalues of linear transformations i. PNAS 35(11):652
Lakshmanan KC, Sadtler PT, Tyler-Kabara EC, Batista AP, Yu BM (2015) Extracting low-dimensional latent structure from time series in the presence of delays. Neural Comput 27(9):1–32
Luo M, Nie F, Chang X, Yang Y, Hauptmann A, Zheng Q (2016) Avoiding optimal mean robust pca/2dpca with non-greedy l1-norm maximization. IJCAI
Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. In: Proceedings of the 3rd international conference on face & gesture recognition, FG ’98. IEEE Computer Society, Washington, p 200–205
Mohar B (1991) The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 12:871–898
Nene SA, Nayar SK, Murase H et al (1996) Columbia object image library (coil-20). Tech. rep., Technical report CUCS-005-96
Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD international conference on knowledge discovery and data mining. ACM, p 977–986
Nie F, Yuan J, Huang H (2014) Optimal mean robust principal component analysis. In: International conference on machine learning, p 1062–1070
Niyogi X (2004) Locality preserving projections. In: Advances in neural information processing systems, vol. 16. MIT Press
Phillips PJ, Wechsler H, Huang J, Rauss PJ (1998) The feret database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16:295–306
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE workshop on applications of computer vision, 1994. IEEE Computer Society, p 138–142
Shortreed S, Meila M (2005) Unsupervised spectral learning. In: Proceedings of the 21st conference annual conference on uncertainty in artificial intelligence (UAI-05). AUAI Press, Arlington, p 534–541
Song J, Gao L, Puscas MM, Nie F, Shen F, Sebe N (2016) Joint graph learning and video segmentation via multiple cues and topology calibration. In: Proceedings of the 2016 ACM on multimedia conference. ACM, p 831–840
Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: CVPR, p 586–591
Woraratpanya K, Sornnoi M, Leelaburanapong S, Titijaroonroj T, Varakulsiripunt R, Kuroki Y, Kato Y (2015) An improved 2dpca for face recognition under illumination effects. In: International conference on information technology and electrical engineering. IEEE, p 448–452
Wu M, Schölkopf B (2006) A local learning approach for clustering. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems 19. MIT Press, p 1529–1536
Yang J, Zhang D, Frangi AF, yu Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1): 131–137
Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19 (10):2761–2773
Yang Y, Shen H, Nie F, Ji R, Zhou X (2011) Nonnegative spectral clustering with discriminative regularization. In: AAAI conference on artificial intelligence, AAAI 2011. San Francisco, p 555–560
Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering. Adv Neural Inf Proces Syst 17:1601–1608
Zhang D, Zhou Z (2005) (2d) 2pca: two-directional two-dimensional pca for efficient face representation and recognition. Neurocomputing 69(1–3):224–231
Zhao Z, Wang L, Liu H, Ye J (2013) On similarity preserving feature selection. IEEE Trans Knowl Data Eng 25(3):619–632
Zhao X, Nie F, Wang S, Guo J, Xu P, Chen X (2017) Unsupervised 2d dimensionality reduction with adaptive structure learning. Neural Computation
Zhu L, Shen J, Xie L, Cheng Z (2016) Unsupervised topic hypergraph hashing for efficient mobile image retrieval. IEEE Trans Cybern. doi:10.1109/TCYB.2016.2591068
Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29 (2):472–486. doi:10.1109/TKDE.2016.2562624
Acknowledgments
This work was jointly supported by Natural Science Basic Research Plan in Shannxi Province of China No. 2017JM6056, and Designing inter-core Datapath for voltage frequency island mpSoC No. 15JK1726.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Guo, J., Zhao, X., Yuan, X. et al. Discriminative unsupervised 2D dimensionality reduction with graph embedding. Multimed Tools Appl 77, 3189–3207 (2018). https://doi.org/10.1007/s11042-017-5019-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-5019-9