Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discriminative unsupervised 2D dimensionality reduction with graph embedding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Dimensionality reduction is a great challenge in high dimensional unlabelled data processing. The existing dimensionality reduction methods are prone to employing similarity matrix and spectral clustering algorithm. However, the noises in original data always make the similarity matrix unreliable and degrade the clustering performance. Besides, existing spectral clustering methods just focus on the local structures and ignore the global discriminative information, which may lead to overfitting in some cases. To address these issues, a novel unsupervised 2-dimensional dimensionality reduction method is proposed in this paper, which incorporates the similarity matrix learning and global discriminant information into the procedure of dimensionality reduction. Particularly, the number of the connected components in the learned similarity matrix is equal to cluster number. We compare the proposed method with several 2-dimensional unsupervised dimensionality reduction methods and evaluate the clustering performance by K-means on several benchmark data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  2. Boyd S, Vandenberghe L (2013) Faybusovich: convex optimization. IEEE Trans Autom Control 51(11):1859–1859

    Google Scholar 

  3. Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637

    Article  Google Scholar 

  4. Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: ACM SIGKDD, p 333–342

    Google Scholar 

  5. Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2582746

    Article  MathSciNet  Google Scholar 

  6. Chang X, Nie F, Ma Z, Yang Y, Zhou X (2015) A convex formulation for spectral shrunk clustering

  7. Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513. doi:10.1109/TNNLS.2015.2441735

    Article  MathSciNet  Google Scholar 

  8. Chang X, Nie F, Yang Y, Huang H (2016) A convex sparse PCA for feature analysis. ACM Trans Knowl Discov Data 11(1):3:1–3:16

    Article  Google Scholar 

  9. Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920. doi:10.1109/TIP.2017.2708506

    Article  MathSciNet  Google Scholar 

  10. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197. doi:10.1109/TCYB.2016.2539546

    Article  Google Scholar 

  11. Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632. doi:10.1109/TPAMI.2016.2608901

    Article  Google Scholar 

  12. Chung FR (1997) Spectral graph theory. American Mathematical Society

  13. Dong X, Huang H, Wen H (2010) A comparative study of several face recognition algorithms based on pca. In: ISCSCT, p 443

    Google Scholar 

  14. Du L, Shen YD (2015) Unsupervised feature selection with adaptive structure learning. In: ACM SIGKDD. ACM, p 209–218

    Google Scholar 

  15. Fan M, Chang X, Tao D (2017) Structure regularized unsupervised discriminant feature analysis

  16. Gao L, Song J, Liu X, Shao J, Liu J, Shao J (2015) Learning in high-dimensional multimedia data: the state of the art. Multimedia Systems 21:1–11

    Article  Google Scholar 

  17. Gao L, Song J, Nie F, Yan Y, Sebe N, Heng TS (2015) Optimal graph learning with partial tags and multiple features for image and video annotation. In: The IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  18. He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  19. He X, Ji M, Zhang C, Bao H (2011) A variance minimization criterion to feature selection using laplacian regularization. IEEE Trans Pattern Anal Mach Intell 33(10):2013–2025

    Article  Google Scholar 

  20. Hu D, Feng G, Zhou Z (2007) Two-dimensional locality preserving projections (2dlpp) with its application to palmprint recognition. Pattern Recogn 40(1):339–342

    Article  Google Scholar 

  21. Kadir SN, Goodman DF, Harris KD (2014) High-dimensional cluster analysis with the masked em algorithm. Neural Comput 26(11):2379–2394

    Article  Google Scholar 

  22. Kambhatla N, Leen TK (1997) Dimension reduction by local pca. Neural Computation

  23. Kodirov E, Xiang T, Fu Z, Gong S (2016) Learning robust graph regularisation for subspace clustering. British Machine Vision Conference

  24. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156

    Article  Google Scholar 

  25. Fan K (1950) On a theorem of weyl concerning eigenvalues of linear transformations i. PNAS 35(11):652

    Article  MathSciNet  Google Scholar 

  26. Lakshmanan KC, Sadtler PT, Tyler-Kabara EC, Batista AP, Yu BM (2015) Extracting low-dimensional latent structure from time series in the presence of delays. Neural Comput 27(9):1–32

    Article  MathSciNet  Google Scholar 

  27. Luo M, Nie F, Chang X, Yang Y, Hauptmann A, Zheng Q (2016) Avoiding optimal mean robust pca/2dpca with non-greedy l1-norm maximization. IJCAI

  28. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. In: Proceedings of the 3rd international conference on face & gesture recognition, FG ’98. IEEE Computer Society, Washington, p 200–205

    Google Scholar 

  29. Mohar B (1991) The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 12:871–898

  30. Nene SA, Nayar SK, Murase H et al (1996) Columbia object image library (coil-20). Tech. rep., Technical report CUCS-005-96

  31. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: ACM SIGKDD international conference on knowledge discovery and data mining. ACM, p 977–986

    Google Scholar 

  32. Nie F, Yuan J, Huang H (2014) Optimal mean robust principal component analysis. In: International conference on machine learning, p 1062–1070

    Google Scholar 

  33. Niyogi X (2004) Locality preserving projections. In: Advances in neural information processing systems, vol. 16. MIT Press

    Google Scholar 

  34. Phillips PJ, Wechsler H, Huang J, Rauss PJ (1998) The feret database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16:295–306

    Article  Google Scholar 

  35. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  36. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE workshop on applications of computer vision, 1994. IEEE Computer Society, p 138–142

    Google Scholar 

  37. Shortreed S, Meila M (2005) Unsupervised spectral learning. In: Proceedings of the 21st conference annual conference on uncertainty in artificial intelligence (UAI-05). AUAI Press, Arlington, p 534–541

    Google Scholar 

  38. Song J, Gao L, Puscas MM, Nie F, Shen F, Sebe N (2016) Joint graph learning and video segmentation via multiple cues and topology calibration. In: Proceedings of the 2016 ACM on multimedia conference. ACM, p 831–840

    Google Scholar 

  39. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: CVPR, p 586–591

    Google Scholar 

  40. Woraratpanya K, Sornnoi M, Leelaburanapong S, Titijaroonroj T, Varakulsiripunt R, Kuroki Y, Kato Y (2015) An improved 2dpca for face recognition under illumination effects. In: International conference on information technology and electrical engineering. IEEE, p 448–452

    Google Scholar 

  41. Wu M, Schölkopf B (2006) A local learning approach for clustering. In: Schölkopf B, Platt J, Hoffman T (eds) Advances in neural information processing systems 19. MIT Press, p 1529–1536

    Google Scholar 

  42. Yang J, Zhang D, Frangi AF, yu Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1): 131–137

    Article  Google Scholar 

  43. Yang Y, Xu D, Nie F, Yan S, Zhuang Y (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19 (10):2761–2773

    Article  MathSciNet  Google Scholar 

  44. Yang Y, Shen H, Nie F, Ji R, Zhou X (2011) Nonnegative spectral clustering with discriminative regularization. In: AAAI conference on artificial intelligence, AAAI 2011. San Francisco, p 555–560

    Google Scholar 

  45. Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering. Adv Neural Inf Proces Syst 17:1601–1608

    Google Scholar 

  46. Zhang D, Zhou Z (2005) (2d) 2pca: two-directional two-dimensional pca for efficient face representation and recognition. Neurocomputing 69(1–3):224–231

    Article  Google Scholar 

  47. Zhao Z, Wang L, Liu H, Ye J (2013) On similarity preserving feature selection. IEEE Trans Knowl Data Eng 25(3):619–632

    Article  Google Scholar 

  48. Zhao X, Nie F, Wang S, Guo J, Xu P, Chen X (2017) Unsupervised 2d dimensionality reduction with adaptive structure learning. Neural Computation

  49. Zhu L, Shen J, Xie L, Cheng Z (2016) Unsupervised topic hypergraph hashing for efficient mobile image retrieval. IEEE Trans Cybern. doi:10.1109/TCYB.2016.2591068

    Article  Google Scholar 

  50. Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29 (2):472–486. doi:10.1109/TKDE.2016.2562624

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by Natural Science Basic Research Plan in Shannxi Province of China No. 2017JM6056, and Designing inter-core Datapath for voltage frequency island mpSoC No. 15JK1726.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Guo or Yao Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhao, X., Yuan, X. et al. Discriminative unsupervised 2D dimensionality reduction with graph embedding. Multimed Tools Appl 77, 3189–3207 (2018). https://doi.org/10.1007/s11042-017-5019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5019-9

Keywords