Abstract
This paper develops a classical visual tracker that is called a discriminative sparse similarity (DSS) tracker. Based on the classical Laplacian multi-task reverse sparse representation to get a DSS map in the DSS tracker, we introduce a sparse generative model (SGM) to handle the appearance variation in the DSS tracker. With the alliance of the DSS map and the SGM, our proposed method can track the object under the occlusion and appearance variations effectively. Numerous experiments on various challenging videos of a tracking benchmark illustrate that the proposed tracker performs favorably against several state-of-the-art trackers.
Similar content being viewed by others
References
Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. IEEE Conf Comput Vis Pattern Recogn 2006:798–805
Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271
Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. IEEE Comput Vis Pattern Recogn 2009:983–990
Cui J, Liu Y, Xu Y et al (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Cybern Part B 43(4):996–1002
Danelljan M, Khan FS, Felsberg M et al (2014) Adaptive color attributes for real-time visual tracking. IEEE Conf Comput Vis Pattern Recogn 2014:1090–1097
Danelljan M, Häger G, Khan FS et al (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561–1575
Dinh TB, Medioni G (2011) Co-training framework of generative and discriminative trackers with partial occlusion handling. IEEE Work Appl Comput Vis 2011:642–649
Gao S, Tsang WH, Chia L T et al (2010) Local features are not lonely- Laplacian sparse coding for image classification. IEEE Comput Vis Pattern Recogn 2010:3555–3561
Hare S, Saffari A, Torr PHS (2012) Struck: structured output tracking with kernels. IEEE Int Conf Comput Vis 2012:263–270
Henriques JF, Rui C, Martins P et al (2014) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596
Hu W, Li X, Zhang X et al (2011) Incremental tensor subspace learning and its applications to foreground segmentation and tracking. IEEE Int J Comput Vis 91 (3):303–327
Ji H, Ling H, Wu Y et al (2012) Real time robust \(l_{1}\) tracker using accelerated proximal gradient approach. IEEE Comput Vis Pattern Recogn 2012:1830–1837
Kalal Z, Matas J, Mikolajczyk K (2010) P-N Learning: bootstrapping binary classifiers by structural constraints. IEEE Comput Vis Pattern Recogn 2010:49–56
Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422
Kwon J, Lee KM (2010) Visual tracking decomposition. IEEE Comput Vis Pattern Recogn 2010:1269–1276
Li X, Hu W, Shen C et al (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):58
Liu B, Huang J, Yang L et al (2011) Robust tracking using local sparse appearance model and K-selection. IEEE Comput Vis Pattern Recogn 2011:1313–1320
Liu Y, Cui J, Zhao H et al (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. Int Conf Pattern Recogn 2012:898–901
Liu Y, Nie L, Han L et al (2015) Action2activity: recognizing complex activities from sensor data. Int Conf Artif Intell 2015:1617–1623
Liu L, Cheng L, Liu Y et al (2016) Recognizing complex activities by a probabilistic interval-based model. Thirtieth Aaai Conf Artif Intell 2016:1266–1272
Liu Y, Nie L, Li L et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115
Lu H, Jia X, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. IEEE Comput Vis Pattern Recogn 2012:1822–1829
Mei X, Ling H (2009) Robust visual tracking using \(l_{1}\) minimization. IEEE Int Conf Comput Vis 2009:1436–1443
Mei X, Ling H, Wu Y et al (2011) Minimum error bounded efficient \(l_{1}\) tracker with occlusion detection. IEEE Comput Vis Pattern Recogn 2011:1257–1264
Ross DA, Lim J, Lin RS et al (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125–141
Rui C, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. IEEE Eur Conf Comput Vis 2012:702–715
Santner J, Leistner C, Saffari A et al (2010) PROST: Parallel robust online simple tracking. IEEE Comput Vis Pattern Recogn 2010:723–730
Tseng P (2008) On accelerated proximal gradient methods for convex-concave optimization. SIAM J Optim
Wang D, Lu H, Chen YW (2010) Incremental MPCA for color object tracking. IEEE Int Conf Pattern Recogn 2010:1751–1754
Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. IEEE Comput Vis Pattern Recogn 2010:3360–3367
Wang S, Lu H, Yang F et al (2011) Superpixel tracking. IEEE Int Conf Comput Vis 2011:1323–1330
Wang Q, Yang MH (2012) Online discriminative object tracking with local sparse representation. Appl Comput Vis 2012:425–432
Wang D, Lu H, Xiao Z et al (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657
Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. IEEE Comput Vis Pattern Recogn 2013:2411–2418
Yang J, Yu K, Gong Y et al (2009) Linear spatial pyramid matching using sparse coding for image classification. IEEE Comput Vis Pattern Recogn 2009:1794–1801
Yang L, Yang L, Huang J et al (2010) Robust and fast collaborative tracking with two stage sparse optimization. IEEE Eur Conf Comput Vis 2010:624–637
Zhang T, Ghanem B, Liu S et al (2012) Robust visual tracking via multi-task sparse learning. IEEE Comput Vis Pattern Recogn 2012:2042–2049
Zhang K, Zhang L, Yang MH (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015
Zhang T, Liu S, Xu C et al (2015) Structural sparse tracking. IEEE Comput Vis Pattern Recogn 2015:150–158
Zhang K, Liu Q, Wu Y et al (2016) Robust visual tracking via convolutional networks without training. IEEE Trans Image Process 25(4):1779–1792
Zhong W, Lu H, Yang M (2014) Robust object tracking via sparsity based collaborative model. IEEE Trans Image Process 23(5):2356–2368
Zhuang B, Lu H, Xiao Z et al (2014) Visual tracking via discriminative sparse similarity map. IEEE Trans Image Process 23(4):1872–1881
Acknowledgments
This work was funded by the National Natural Science Foundation of China (61571410 and 61672477) and the Zhejiang Provincial Nature Science Foundation of China (LY18F020018).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Research involving Human Participants and/or Animals
This study did not involve Human Participants and Animals.
Informed Consent
The all authors of this paper have consented the submission.
Rights and permissions
About this article
Cite this article
Zhao, J., Zhang, W. & Cao, F. Robust object tracking using a sparse coadjutant observation model. Multimed Tools Appl 77, 30969–30991 (2018). https://doi.org/10.1007/s11042-018-6132-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-6132-0