Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Brain MRI imaging mechanism based on deep visual information perception and dementia degree induction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The traditional medical image recognition methods are limited by image resolution, image brightness and color processing parameters, and image quality evaluation is low. In particular, the incomplete visual information of medical images and the disorder of color structure make the complexity of human visual perception and recognition significantly increased and the accuracy is poor. In order to solve the above problems, this paper is based on the mechanism of deep brain information perception and dementia induced brain magnetic resonance imaging (BMI-DVDI). On the one hand, based on the depth fusion of the visual information system, the medical image depth vision system and its perception model with high precision and low complexity are designed for the two damage of medical image quality and the perception of visual information. On the other hand, the dementia model is designed by means of matrix representation of dementia image signal, screening of dementia sensing brain signal and image reconstruction. The model is helpful to solve the problems of image signal deformation, measurement precision of signal degree and reconstruction of image enhancement in brain magnetic resonance imaging. This model enhances the accuracy of brain diseases such as dementia. Then, we combine the sensing algorithm with the degree of dementia in the brain, and apply it to the MRI of the brain. Finally, through simulation experiments and nuclear magnetic resonance imaging experiments, the space complexity, time complexity, system execution efficiency and image quality evaluation are compared. The result is that the proposed algorithm has excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buckberg GD, Mahajan A, Jung B et al (2016) MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities.[J]. Eur J Cardio-Thoracic Surg 29(Suppl 1(Supplement_1)):423–430

    Google Scholar 

  2. Jie Y, Daojun T (2018) A modified improved Possibilistic c-means method for computed tomography image segmentation [J]. J Med Imag Health Inform 8(3):555–560(6)

    Article  Google Scholar 

  3. Kodama T, Tanaka M, Tamura T et al (2018) Panoramic views of cluster-scale assemblies explored by Subaru wide-field imaging [J]. Publ Astrono Soc Jap 57(2):309–323

    Article  Google Scholar 

  4. Korolev S, Safiullin A, Belyaev M, et al. (2017) Residual and plain convolutional neural networks for 3D brain MRI classification [C]. IEEE Int Symp Biomed Imag IEEE

  5. Lee PS, West JD, Howe B (2016) Viziometrics: analyzing visual information in the scientific literature [J]. IEEE Trans Big Data: 1–1

  6. Matta F, Saeed U, Mallauran C et al. (2016) Facial gender recognition using multiple sources of visual information [C]. Multimed Sign Process 2008 IEEE Workshop IEEE: 785–790

  7. Nardini M, Bales J, Mareschal D (2016) Integration of audio-visual information for spatial decisions in children and adults [J]. Dev Sci 19(5):803

    Article  Google Scholar 

  8. Pham C H, Ducournau A, Fablet R, et al. (2017) Brain MRI super-resolution using deep 3D convolutional networks [C]. IEEE Int Symp Biomed Imag IEEE: 197–200

  9. Prins D, Hanekamp S, Cornelissen FW (2016) Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings [J]. Acta Ophthalmol 94(2):113–121

    Article  Google Scholar 

  10. Shah S, Chauhan NC (2016) Techniques for detection and analysis of Tumours from brain MRI images: a review [J]. Health Econ 9(3):235–251

    Google Scholar 

  11. Stockholm D, Bartoli M, Sillon G et al (2017) Imaging calpain protease activity by multiphoton FRET in living mice [J]. J Mol Biol 346(1):215–222

    Article  Google Scholar 

  12. Vandermosten M, Hoeft F, Norton ES (2016) Integrating MRI brain imaging studies of pre-reading children with current theories of developmental dyslexia: a review and quantitative meta-analysis.[J]. Curr Opin Behav Sci 10:155–161

    Article  Google Scholar 

  13. Vesper C, Schmitz L, Lou S et al (2016) The role of shared visual information for joint action coordination [J]. Cognition 153:118–123

    Article  Google Scholar 

  14. Viani F, Rocca P, Oliveri G et al (2016) Localization, tracking, and imaging of targets in wireless sensor networks: an invited review [J]. Radio Sci 46(5):1–12

    Google Scholar 

  15. Xia Y, Ji Z, Zhang Y (2016) Brain MRI image segmentation based on learning local variational Gaussian mixture models [J]. Neurocomputing 204:189–197

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (81771795), Scientific research project of the health planning committee of Heilongjiang (2017-337), Scientific research project of Mudanjiang Municipal Science and Technology Bureau (Z2016s0066), and Graduate Innovation fund project of Mudanjiang Medical University (2017YJSCX-05MY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhao Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Li, S., Wang, Z. et al. Brain MRI imaging mechanism based on deep visual information perception and dementia degree induction. Multimed Tools Appl 78, 8841–8859 (2019). https://doi.org/10.1007/s11042-018-6506-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6506-3

Keywords