Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust joint learning network: improved deep representation learning for person re-identification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Existing person re-identification methods, which based on deep representation learning, mostly only focus on either global feature or local feature. This obviously ignores the joint advantages and the correlation between global and local features. In this paper, we test and verify the benefits of jointly learning local and global features in a network based on the Convolutional Neural Network (CNN). Specifically, we give distinct weights to global loss and local loss when considering their different influence on our research, then we innovatively combine two losses into one loss. Besides, we propose a novel and strong network to learn part-level features with unified partition. Experimental results on three person ReID data sets, show that our method outperforms existing deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed E, Jones M, Marks TK (2015) An improved deep learning architecture for person re-identification. In: CVPR

  2. Bai S, Bai X, Tian Q (2017) Scalable person re-identification on supervised smoothed manifold. In: CVPR

  3. Barbosa IB, Cristani M, Caputo B, Rognhaugen A, Theoharis T (2017) Looking beyond appearances: synthetic training data for deep cnns in re-identification. arXiv preprint arXiv:1701.03153

    Google Scholar 

  4. Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks[J]. IEEE Trans Neural Netw Learn Syst 28(10):2294–2305

    Article  MathSciNet  Google Scholar 

  5. Chen D, Yuan Z, Chen B, Zheng N (2016) Similarity learning with spatial constraints for person re-identification. In: CVPR, pp 1268–1277

  6. Chen Y, Zhu X, Gong S (2017) Person re-identification by deep learning multi scale representations. In: International conference on computer vision, workshop on cross-domain human identification (CHI)

  7. Cheng DS, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for re-identification. In: BMVC

  8. Chung D, Tahboub K, Delp EJ (2017) A two stream siamese convolutional neural network for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1983–1991

  9. Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via region-based fully convolutional networks. In: NIPS

  10. Das A, Chakraborty A, Roy-Chowdhury AK (2014) Consistent re-identification in a camera network. Springer International Publishing

  11. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: CVPR. IEEE, pp 2360–2367

  12. Geng M, Wang Y, Xiang T, Tian Y (2016) Deep transfer learning for person re-identification. arXiv preprint arXiv:1611.05244

    Google Scholar 

  13. Gheissari N, Sebastian TB, Hartley R (2006) Person reidentification using spatiotemporal appearance. In: CVPR

  14. Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: ECCV

  15. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR

  16. Hermans A, Beyer L, Leibe B (2017) In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737

    Google Scholar 

  17. Jing P, Su Y, Nie L et al (2017) Low-rank multi-view embedding learning for micro-video popularity prediction[J]. IEEE Trans Knowl Data Eng PP(99):1–1

    Google Scholar 

  18. Jose C, Fleuret F, Jose C, Fleuret F (2016) Scalable metric learning via weighted approximate rank component analysis. In: ECCV

  19. Kalayeh MM, Basaran E, Gokmen M, Kamasak ME, Shah M (2018) Human semantic parsing for person re-identification. CVPR

  20. Karanam S, Gou M, Wu Z, Rates-Borras A, Camps O, Radke RJ (2016) A comprehensive evaluation and benchmark for person re-identification: features, metrics, and data sets. arXiv preprint arXiv:1605.09653

    Google Scholar 

  21. Kviatkovsky I, Adam A, Rivlin E (2013) Color invariants for person re-identification. IEEE TPAMI 35(7):1622–1634

    Article  Google Scholar 

  22. Li W, Zhao R, Xiao T, Wang X (2014) Deepreid: deep filter pairing neural network for person re-identification. In: CVPR

  23. Li W, Zhu X, Gong S (2017) Person re-identification by deep joint learning of multi-loss classification. In: IJCAI

  24. Li Z, Nie F, Chang X et al (2017) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis[J]. IEEE Trans Knowl Data Eng PP(99):1–1

    Google Scholar 

  25. Li J, Lu K, Huang Z et al (2018) Transfer independently together: a generalized framework for domain adaptation[J]. IEEE TRANS. CYBERN. PP(99):1–12

    Google Scholar 

  26. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by local maximal occurrence representation and metric learning. CVPR

  27. Lin M, Qiang C, Yan S (2014) Network in network. In: ICLR

  28. Lin J, Ren L, Lu J, Feng J, Zhou J (2017) Consistent-aware deep learning for person re-identification in a camera network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5771–5780

  29. Lisanti G, Masi I, Bagdanov AD, Del Bimbo A (2015) Person re-identification by iterative re-weighted sparse ranking. IEEE TPAMI 37(8):1629–1642

    Article  Google Scholar 

  30. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C, Berg AC (2016) SSD: single shot multibox detector. In: ECCV

  31. Liu X, Zhao H, Tian M, Sheng L, Shao J, Yi S, Yan J, Wang X (2017) Hydraplus-net: attentive deep features for pedestrian analysis. In: ICCV

  32. Long M, Wang J, Jordan MI (2016) Unsupervised domain adaptation with residual transfer networks. CoRR, abs/1602.04433

  33. Luo M, Chang X, Li Z et al (2017) Simple to complex cross-modal learning to rank[J]. Comput Vis Image Underst 163

  34. Ma L, Yang X, Tao D (2014) Person re-identification over camera networks using multi-task distance metric learning. IEEE TIP 23(8):3656–3670

    MathSciNet  MATH  Google Scholar 

  35. Martinel N, Das A, Micheloni C, Roy Chowdhury AK (2016) Temporal model adaptation for person reidentification. In: ECCV. Springer, pp 858–877

  36. Matsukawa T, Okabe T, Suzuki E, Sato Y (2016) Hierarchical gaussian descriptor for person re-identification. In: CVPR, pp 1363–1372

  37. Nye L, Akbar M, Li T, Chua T-S (2014) A joint local-global approach for medical terminology assignment. In: Proc. Int. ACM SIGIR Conf

  38. Qian X, Fu Y, Jiang Y-G, Xiang T, Xue X (2017) Multiscale deep learning architectures for person re-identification. ICCV

  39. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Performance measures and a data set for multi-target, multicamera tracking. In: European conference on computer vision workshop on benchmarking multi-target tracking

  40. Su C, Zhang S, Xing J, Gao W, Tian Q (2016) Deep attributes driven multi-camera person re-identification. In: ECCV

  41. Su C, Li J, Zhang S, Xing J, Gao W, Tian Q (2017) Pose-driven deep convolutional model for person re-identification. ICCV

  42. Sun Y, Zheng L, Deng W, Wang S (2017) SVDNet for pedestrian retrieval. In: ICCV

  43. Sun Y, Liang Z, Yang Y, Tian Q, Wang S (2017) Beyond part models: person retrieval with refined part pooling. arXiv preprint arXiv:1711.09349

    Google Scholar 

  44. Ustinova E, Ganin Y, Lempitsky V (2015) Multiregion bilinear convolutional neural networks for person reidentification. arXiv preprint arXiv:1512.05300

    Google Scholar 

  45. Varior R, Haloi M, Wang G (2016) Gated siamese convolutional neural network architecture for human reidentification. In: ECCV

  46. Wei L, Zhang S, Yao H, Gao W, Tian Q (2017) GLAD: global-local-alignment descriptor for pedestrian retrieval. ACM Multimedia

  47. Wu L, Shen C, Hengel A (2016) Personnet: person re-identification with deep convolutional neural networks. arXiv preprint arXiv:1601.07255

    Google Scholar 

  48. Wu S, Chen Y-C, Li X, Wu A-C, You J-J, Zheng W-S (2016) An enhanced deep feature representation for person re- identification. In: WACV

  49. Wu Z, Huang Y, Wang L, Wang X, Tan T (2016) A comprehensive study oncross- view gait based human identification with deep cnns. TPAMI

  50. Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR

  51. Xie L, Shen J, Han J et al (2017) Dynamic multi-view hashing for online image retrieval[C]. Twenty-sixth international joint conference on artificial intelligence, pp 3133–3139

  52. Xiong F, Gou M, Camps O, Sznaier M (2014) Person re-identification using kernel-based metric learning methods. In: ECCV. Springer, pp 1–16

  53. Yang Y, Yang J, Yan J, Liao S, Yi D, Li SZ (2014) Salient color names for person re-identification. In: ECCV. Springer, pp 536–551

  54. Yao H, Zhang S, Zhang Y, Li J, Tian Q (2017) Deep representation learning with part loss for person re-identification. arXiv preprint arXiv:1707.00798

    Google Scholar 

  55. Yu H-X, Wu A, Zheng W-S (2017) Cross-view asymmetric metric learning for unsupervised person re-identification. In: IEEE international conference on computer vision

  56. Zeng Z, Li Z, Cheng D et al (2017) Two-stream multi-rate recurrent neural network for video-based pedestrian re-identification[J]. IEEE T IND INFORM:1–1

  57. Zhang L, Xiang T, Gong S (2016) Learning a discriminative null space for person re-identification. In: CVPR

  58. Zhang Y, Li B, Lu H, Irie A, Ruan X (2016) Sample-specific svm learning for person re-identification. In: CVPR

  59. Zhang Y, Xiang T, Hospedales TM, Lu H (2017) Deep mutual learning. arXiv preprint arXiv:1705.00384

    Google Scholar 

  60. Zhao R, Ouyang W, Wang X (2014) Learning mid-level filters for person re-identification. In: CVPR, pp 144–151

  61. Zhao H, Tian M, Shao J, Sun S, Yan J, Yi S, Wang X, Tang X (2017) Spindle net: person re-identification with human body region guided feature. In: CVPR

  62. Zhao L, Li X, Wang J, Zhuang Y (2017) Deeply-learned part-aligned representations for person re-identification. In: ICCV

  63. Zheng W, Gong S, Xiang T (2013) Reidentification by relative distance comparison. TPAMI

  64. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scalable person re-identification: a benchmark. In: ICCV

  65. Zheng L, Yang Y, Hauptmann AG (2016) Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984

    Google Scholar 

  66. Zheng Z, Zheng L, Yang Y (2016) A discriminatively learned cnn embedding for person re-identification. arXiv pre- print arXiv:1611.05666

    Google Scholar 

  67. Zheng L, Huang Y, Lu H, Yang Y (2017) Pose invariant embedding for deep person re-identification. arXiv preprint arXiv:1701.07732

    Google Scholar 

  68. Zheng L, Zhang H, Sun S, Chandraker M, Tian Q (2017) Person re-identification in the wild. CVPR

  69. Zhong Z, Zheng L, Kang G, Li S, Yang Y (2017) Random erasing data augmentation. arXiv preprint arXiv:1708.04896

    Google Scholar 

  70. Zhou J, Yu P, Tang W, Wu Y (2017) Efficient online local metric adaptation via negative samples for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2420–2428

  71. Zhu L, Huang Z, Chang X et al (2017) Exploring consistent preferences: discrete hashing with pair-exemplar for scalable landmark search[C]. ACM, pp 726–734

  72. Zhu L, Huang Z, Liu X et al (2017) Discrete multimodal hashing with canonical views for robust Mobile landmark search[J]. IEEE T MULTIMEDIA 19(9):2066–2079

    Article  Google Scholar 

  73. Zhu L, Huang Z, Li Z et al (2018) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval[J]. IEEE T NEUR NET LEAR PP(99):1–13

    Google Scholar 

Download references

Acknowledgements

This paper was supported in part by the National Natural Science Foundation of China under Grant 61702394, Grant 61572385 and Grant 61711530248, in part by the Postdoctoral Science Foundation of China under Grant 2018T111021 and Grant 2017M613082, in part by the Science and Technology Project of Shaanxi Province under Grant 2016GY-033, in part by the Shaanxi Key Research and Development Program under Grant 2017ZDXM-GY-002, in part by the Aeronautical Science Foundation of China under Grant 20171981008, and in part by the Fundamental Research Funds for the Central Universities under Grant JBX170313, Grant XJS17063 and Grant JBF180301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, Q., Wang, D. et al. Robust joint learning network: improved deep representation learning for person re-identification. Multimed Tools Appl 78, 24187–24203 (2019). https://doi.org/10.1007/s11042-018-6998-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6998-x

Keywords