Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective reversible data hiding using dynamic neighboring pixels prediction based on prediction-error histogram

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, an efficient PEH-based scheme using dynamic neighboring pixels (DNP) predictor and adaptive embedding strategy is proposed. Concerning four gradient regions (horizontal/vertical/rhombus/plane gradient region) of the current pixel, the prediction method is generated adaptively by DNP predictor. After complexity calculating, the current pixel belonging to the flat, semi-flat and normal areas are applied for histogram modification and data embedding. Moreover, by using our selection strategy of thresholds and embedding bin pairs, the search procedure is accelerated and higher fidelity of stego-image is obtained. Experimental results indicate that our dynamic neighboring pixels prediction-error histogram (DNPPEH) scheme is more effective comparing with six state-of-the-art histogram-based RDH schemes in spatial domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abu-Marie W, Gutub A, Abu-Mansour H (2010) Image based steganography using truth table based and determinate array on RGB indicator. Int J Sig Image Process 1(3)

  2. Chen X, Chen S, Wu Y (2017) Coverless information hiding method based on the Chinese character encoding. J Internet Technol 18(2):313–320

    Google Scholar 

  3. Coatrieux G, Pan W, Cuppens-Boulahia N, Cuppens F, Roux C (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensic Secur 8(1):111–120

    Article  Google Scholar 

  4. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882

    Article  Google Scholar 

  5. Dragoi I, Coltuc D (2016) Adaptive pairing reversible watermarking. IEEE Trans Image Process 25(5):2420–2422

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng G, Fan L (2012) Reversible data hiding of high payload using local edge sensing prediction. J Syst Softw 85(12):392–399

    Article  Google Scholar 

  7. Gao X, An L, Yuan Y, Tao D, Li X (2011) Lossless data embedding using generalized statistical quantity histogram. IEEE Trans Circ Syst Video Technol 21(8):1061–1070

    Article  Google Scholar 

  8. Gao E, Pan Z, Gao X (2019) Reversible data hiding based on novel pairwise PVO and annular merging strategy. Inf Sci 505:549–561

    Article  MathSciNet  Google Scholar 

  9. Gutub AA-A (2010) Pixel indicator technique for RGB image steganography. J Emerg Technol Web Intell 2(1):56–64

    Google Scholar 

  10. Gutub A, Al-Ghamdi M (2019) Image based steganography to facilitate improving counting-based secret sharing. 3D Res 10(1):6

    Article  Google Scholar 

  11. He W, Cai J, Zhou K, Xiong G (2017) Efficient PVO-based reversible data hiding using multistage blocking and prediction accuracy matrix. J Vis Commun Image Represent 46:58–69

    Article  Google Scholar 

  12. Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP J Appl Signal Process 2010:Art. ID 104835

    Article  Google Scholar 

  13. Hong W, Chen T-S (2010) A local variance-controlled reversible data hiding method using prediction and histogram-shifting. J Syst Softw 83(12):2653–2663

    Article  Google Scholar 

  14. Hong W, Chen T-S, Shiu C-W (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  15. Howard PG, Kossentini F, Martins B, Forchhammer S, Rucklidge WJ (1998) The emerging JBIG2 standard. IEEE Trans Circ Syst Video Technol 8(7):838–848

    Article  Google Scholar 

  16. Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  17. Jia Y, Yin Z, Zhang X, Luo Y (2019) Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Process 163:238–246

    Article  Google Scholar 

  18. Kim S, Qu X, Sachnev V, Kim HJ (2018) Skewed histogram shifting for reversible data hiding using a pair of extreme predictions. IEEE Trans Circ Syst Video Technol PP(99):1–1

    Google Scholar 

  19. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100

    Article  Google Scholar 

  20. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205

    Article  Google Scholar 

  21. Li X, Zhang W, Gui X, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Inf Forensic Secur 10(9):2016–2027

    Article  Google Scholar 

  22. Lukac R, Martin K, Plataniotis KN (2004) Digital camera zooming based on unified CFA image processing steps. IEEE Trans Consum Electron 50(1):15–24

    Article  Google Scholar 

  23. Ma X, Pan Z, Hu S, Wang L (2015) High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism. J Vis Commun Image Represent 18:71–82

    Article  Google Scholar 

  24. Ni Z, Shi Y-Q, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  25. Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  26. Ou B, Li X, Wang J (2016) Improved PVO-based reversible data hiding: a new implementation based on multiple histograms modification. J Vis Commun Image Represent 38:328–339

    Article  Google Scholar 

  27. Ou B, Li X, Wang J, Peng F (2017) High-fidelity reversible data hiding based on geodesic path and pairwise prediction-error expansion. Neurocomputing 226:23–34

    Article  Google Scholar 

  28. Pan Z, Gao E (2019) Reversible data hiding based on novel embedding structure PVO and adaptive block-merging strategy. Multimed Tools Appl 78(18):26047–26071. https://doi.org/10.1007/s11042-019-7692-3

    Article  Google Scholar 

  29. Pan Z, Ma X, Deng X, Hu S (2013) Low bit-rate information hiding method based on search-order-coding technique. J Syst Softw 86(11):2863–2869

    Article  Google Scholar 

  30. Pan Z, Hu S, Ma X, Wang L (2015) Reversible data hiding based on local histogram shifting with multilayer embedding. J Vis Commun Image Represent 31:64–74

    Article  Google Scholar 

  31. Parvez MT, Gutub AA-A (2011) Vibrant color image steganography using channel differences and secret data distribution. Kuwait J Sci Eng 38(1B):127–142

    Google Scholar 

  32. Peng F, Li X, Yang B (2014) Improved pvo-based reversible data hiding. Digital Sig Process 25:255–265

    Article  Google Scholar 

  33. Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164

    Article  Google Scholar 

  34. Qin C, Zhang W, Cao F, Zhang X, Chang CC (2018) Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection. Signal Process 153:109–122

    Article  Google Scholar 

  35. Sachnev V, Kim HJ, Nam J, Suresh S, Shi Y-Q (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  36. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  37. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  38. He, W., Zhou, K., Cai, J., Wang, L., Xiong, G. (2017). Reversible data hiding using multi-pass pixel value ordering and prediction-error expansion. Journal of Visual Communication and Image Representation, 49, 351-360.

  39. Wang C, Li X, Yang B (2010) Efficient reversible image watermarking by using dynamical prediction-error expansion. Proc IEEE ICIP:3673–3676

  40. Wang L, Pan Z, Ma X, Hu S (2014) A novel high-performance reversible data hiding scheme using SMVQ and improved locally adaptive coding method. J Vis Commun Image Represent 25(2):454–465

    Article  Google Scholar 

  41. Li, X., Yang, B., Zeng, T. (2011). Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Transactions on Image Processing, 20(12), 3524-3533.

  42. Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324

    Article  Google Scholar 

  43. Weng S, Pan J, Li L (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding. Inf Sci 369:144–159

    Article  Google Scholar 

  44. Weng S, Zhang G, Pan JS, Zhou Z (2017) Optimal PPVO-based reversible data hiding. J Vis Commun Image Represent 48:317–328

    Article  Google Scholar 

  45. Wu H-T, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009

    Article  Google Scholar 

  46. Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444

    Article  Google Scholar 

  47. Xuan G, Tong X, Teng J, Zhang X, Shi YQ (2013) Optimal histogram-pair and prediction-error based image reversible data hiding. In: International workshop on digital-forensics and watermarking (IWDW12), October 31 to November 3, 2012, Shanghai, China. In: Proceedings 11th international workshop on digital-forensics and watermarking, LNCS, vol 7809, pp 368–383

  48. Yuan C, Xia Z, Sun X (2017) Coverless image steganography based on SIFT and BOF. J Internet Technol 18(2):435–442

    Google Scholar 

Download references

Acknowledgments

Acknowledgment s The acknowledgment is changed to: This work is supported in part by the Science and Technology Program of Xi’an Municipality (Grant No. GXYD11.1) and the Open Project Program of State Key Laboratory of Novel Software Technology (Nanjing University) (Grant No. KFKT2019B26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Gao, X., Wang, L. et al. Effective reversible data hiding using dynamic neighboring pixels prediction based on prediction-error histogram. Multimed Tools Appl 79, 12569–12595 (2020). https://doi.org/10.1007/s11042-019-08335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08335-0

Keywords