Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Region duplication detection based on hybrid feature and evaluative clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Digital image are easy to be tampered by the photo editing software. Therefore, digital image forensics which aims at validating the authenticity of the digital image are received wide public concern. Region duplication is a commonly used operation in digital image forgeries. The main aims of the region duplication are to overemphasize or conceal some contents by duplicating some regions on the image. Most of the region duplication methods can be categorized into two main classes:block-based and keypoint-based methods. In this paper, a novel region duplication detection scheme is proposed based on hybrid feature and evaluative clustering. The proposed scheme is divided into two stages: the rough matching and the exact matching. In the rough matching, first, hybrid keypoints are extracted from the input image, and those keypoints are described by the unified descriptors. Second, those keypoints are matched by the g2NN strategy. Third, those matched keypoints are grouped by the proposed clustering based on evaluation. Fourth, affine transformations are estimated between these groups, and Bag of Word is used to filter inaccuracy affine transformations to improve the results of pixel level. When no affine transformation is obtained, in the exact matching, each suspicious region is handled separately. Experimental results indicate that the proposed scheme outperforms the state-of-the-art methods under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Alcantarilla PF, Bartoli A, Davison AJ (2012) Kaze features. In: European conference on computer Vision (ECCV), 214–227, Florence, Italy

  3. Amerini I, Ballan L, Caldelli R, Bimbo AD, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inform Forensics Secur 6(3):1099–1110

    Article  Google Scholar 

  4. Amerini I, Ballan L, Caldelli R, Bimbo AD, Tongo LD, Serra G (2013) Copy-move forgery detection and localization by means of robust clustering with j-Linkage. Signal Process Image Commun 28(6):659–669

    Article  Google Scholar 

  5. Ardizzone E, Bruno A, Mazzola G (2015) Copycmove forgery detection by matching triangles of keypoints. IEEE Trans Inform Forensics Secur 10(10):2084–2094

    Article  Google Scholar 

  6. Avidan S, Shamir A (2007) Seam carving for content-aware image resizing. ACM Trans Graph 26(3):10

    Article  Google Scholar 

  7. Barnes C, Shechtman E, Finkelstein A, Dan BG (2009) Patchmatch:a randomized correspondence algorithm for structural image editing. Acm Trans Graph 28(3):1–11

    Article  Google Scholar 

  8. Bashar M, Noda K, Ohnishi N, Mori K (2010) Exploring duplicated regions in natural images. IEEE Trans Image Process PP(99):1–1

    Google Scholar 

  9. Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: speeded Up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  10. Beis JS, Lowe DG (1997) Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: Conference on computer vision and pattern recognition (CVPR), 1000–1006, San Juan, Puerto Rico

  11. Bravo-Solorio S, Nandi AK (2011) Exposing duplicated regions affected by reflection, rotation and scaling. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), 1880–1883, Prague, Czech Republic

  12. Chen J, Lu W, Fang Y, Liu X, Yeung Y, Yingjie X (2018) Binary image steganalysis based on local texture pattern. J Vis Commun Image Represent 55:149–156

    Article  Google Scholar 

  13. Chen J, Lu W, Yeung Y, Xue Y, Liu X, Lin C, Zhang Y (2018) Binary image steganalysis based on distortion level co-occurrence matrix. Comput Mater Continua 55(2):201–211

    Google Scholar 

  14. Chen L, Lu W, Ni J (2012) An image region description method based on step sector statistics and its application in image copy-rotate/flip-move forgery detection. Int J Digital Crime Forensics 4(1):49–62

    Article  Google Scholar 

  15. Chen L, Lu W, Ni J, Sun W, Huang J (2013) Region duplication detection based on harris corner points and step sector statistics. J Vis Commun Image Represent 24(3):244–254

    Article  Google Scholar 

  16. Chen X, Jian W, Wei L, Jiaming X (2018) Multi-gait recognition based on attribute discovery. IEEE Trans Pattern Anal Mach Intell 40(7):1697–1710

    Article  Google Scholar 

  17. Christlein V, Riess C, Angelopoulou E (2010) On rotation invariance in copy-move forgery detection. In: IEEE international workshop on information forensics and security (WIFS), 1-6, Seattle, WA, USA

  18. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inform Forensics Secur 7(6):1841–1854

    Article  Google Scholar 

  19. Cozzolino D, Poggi G, Verdoliva L (2015) Copy-move forgery detection based on patchmatch. In: IEEE International conference on image processing, 5312–5316, Quebec City, Canada

  20. Cozzolino D, Poggi G, Verdoliva L (2015) Efficient dense-field copycmove forgery detection. IEEE Trans Inform Forensics Secur 10(11):2284–2297

    Article  Google Scholar 

  21. Farid H (2009) Image forgery detection. Signal Process Magazine IEEE 26 (2):16–25

    Article  Google Scholar 

  22. Farid H (2009) Photo fakery and forensics. Adv Comput 77:1–55

    Article  Google Scholar 

  23. Feng B, Lu W, Sun W (2014) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inform Forensics Secur 10 (2):243–255

    Article  Google Scholar 

  24. Feng B, Weng J, Lu W, Pei B (2017) Multiple watermarking using multilevel quantization index modulation. In: International workshop on digital watermarking, 312–326, Beijing, China

  25. Feng B, Weng J, Lu W, Pei B (2017) Steganalysis of content-adaptive binary image data hiding. J Vis Commun Image Represent 46:119–127

    Article  Google Scholar 

  26. Ferreira A, Felipussi SC, Alfaro C, Fonseca P, Vargas-Munoz JE, Dos Santos JA, Rocha A (2016) Behavior knowledge space-based fusion for copy-move forgery detection. IEEE Trans Image Process 25(10):4729–4742

    Article  MathSciNet  MATH  Google Scholar 

  27. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  28. Forssen PE (2007) Maximally stable colour regions for recognition and matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–8, Minneapolis, Minnesota, USA

  29. Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Proceeding of digital forensic research workshop, 19-23, Cleveland, OH, USA

  30. Hamdi D, Iqbal F, Baker T, Shah B (2016) Multimedia file signature analysis for smartphone forensics. In: International conference on developments in esystems engineering. Liverpool, UK

  31. Harris CG, Stephens MJ (1988) A combined corner and edge detector. In: Alvey vision conference, 147–151

  32. Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning. Springer, Berlin

    MATH  Google Scholar 

  33. He Z, Lu W, Sun W, Huang J (2012) Digital image splicing detection based on markov features in dct and dwt domain. Pattern Recogn 45(12):4292–4299

    Article  Google Scholar 

  34. Hsu YN, Arsenault HH, April G (1982) Rotation-invariant digital pattern recognition using circular harmonic expansion. Appl Opt 21(22):4012–4015

    Article  Google Scholar 

  35. Huang Y, Lu W, Sun W, Long D (2011) Improved DCT-based detection of copy-move forgery in images. Forensic Sci Int 206(1-3):178–184

    Article  Google Scholar 

  36. Jin G, Wan X (2017) An improved method for sift-based copycmove forgery detection using non-maximum value suppression and optimized j-Linkage. Signal Process Image Commun 57:113–125

    Article  Google Scholar 

  37. Lai Y, Huang T, Jing L, Lu H (2018) An improved block-based matching algorithm of copy-move forgery detection. Multimed Tool Appl 77(12):15,093–15,110

    Article  Google Scholar 

  38. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forensics Secur 10(3):507–518

    Article  Google Scholar 

  39. Li J, Lu W (2016) Blind image motion deblurring with L0-regularized priors. J Vis Commun Image Represent 40:14–23

    Article  Google Scholar 

  40. Li J, Lu W, Weng J, Mao Y, Li G (2018) Double jpeg compression detection based on block statistics. Multimed Tool and Appl 77(24):31,895–31,910

    Article  Google Scholar 

  41. Li J, Yang F, Lu W, Sun W (2016) Keypoint-based copy-move detection scheme by adopting mscrs and improved feature matching. Multimed Tool Appl 76 (20):1–15

    Google Scholar 

  42. Li Y (2013) Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Sci Int 224(1-3):59

    Article  Google Scholar 

  43. Li Y, Zhou J (2018) Fast and effective image copy-move forgery detection via hierarchical feature point matching. IEEE Trans Inform Forensics Secur PP(99):1–1

    Google Scholar 

  44. Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z (2018) Copy-move forgery detection using combined features and transitive matching, Multimed Tool Appl, pp 1–16. https://doi.org/10.1007/s11042-018-6922-4

  45. Lin C, Lu W, Sun W, Zeng J, Xu T, Lai JH (2018) Region duplication detection based on image segmentation and keypoint contexts. Multimed Tool Appl 77 (11):14,241–14,258

    Article  Google Scholar 

  46. Liu G, Wang J, Lian S, Wang Z (2011) A passive image authentication scheme for detecting region-duplication forgery with rotation. J Netw Comput Appl 34 (5):1557–1565

    Article  Google Scholar 

  47. Liu X, Lu W, Huang T, Liu H, Xue Y, Yuileong Y (2018) Scaling factor estimation on jpeg compressed images by cyclostationarity analysis, Multimed Tool Appl, pp 1–18. https://doi.org/10.1007/s11042-018-6411-9

  48. Liu X, Lu W, Zhang Q, Huang J, Shi YQ (2019) Downscaling factor estimation on pre-jpeg compressed images, IEEE Trans Circuit Syst Video Technol, pp 1–1. https://doi.org/10.1109/TCSVT.2019.2893353

  49. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Google Scholar 

  50. Lu W, He L, Yeung Y, Xue Y, Liu H, Feng B (2019) Secure binary image steganography based on fused distortion measurement. IEEE Trans Circuit Syst Video Technol PP(99):1–1

    Google Scholar 

  51. Lu W, Sun W, Chung FL, Lu H (2011) Revealing digital fakery using multiresolution decomposition and higher order statistics. Eng Appl Artif Intell 24 (4):666–672

    Article  Google Scholar 

  52. Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tool Appl 75(21):13,557– 13,583

    Article  Google Scholar 

  53. Ma Y, Luo X, Li X, Bao Z, Yi Z (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circuit Syst Video Technol PP(99):1–1

    Google Scholar 

  54. Macdermott A, Baker T, Shi Q (2018) Iot forensics: challenges for the ioa era. In: 9th IFIP international conference on new technologies, mobility and security (NTMS), Paris, France

  55. Mahdian B, Saic S (2007) Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci Int 171:180–189

    Article  Google Scholar 

  56. Mclachlan GJ, Krishnan T (1997) The em algorithm and extensions. Biometrics 382(1):154–156

    MATH  Google Scholar 

  57. Mikolajczyk K, Schmid C (2002) Indexing based on scale invariant interest points. In: IEEE International Conference on Computer Vision (ICCV), 525–531, Vancouver, BC, Canada

  58. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  59. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  60. Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. Ksii Trans Internet Inform Syst 9(5):1938–1962

    Google Scholar 

  61. Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2017) Cisska-lsb: color image steganography using stego key-directed adaptive lsb substitution method. Multimed Tool Appl 76(6):8597– 8626

    Article  Google Scholar 

  62. Muhammad K, Sajjad M, Baik SW (2016) Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. J Med Syst 40(5):1–16

    Article  Google Scholar 

  63. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Futur Gener Comput Syst 86:951–960

    Article  Google Scholar 

  64. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic lsb substitution method (m-lsb-sm) using multi-level encryption and achromatic component of an image. Multimed Tool Appl 75(22):14,867–14,893

    Article  Google Scholar 

  65. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inform Forensics Secur 5(4):857–867

    Article  Google Scholar 

  66. Pun CM, Yuan XC, Bi XL (2015) Image forgery detection using adaptive over-segmentation and feature points matching. IEEE Trans Inform Forensics Secur 10 (8):1705–1716

    Article  Google Scholar 

  67. Redi JA, Taktak W, Dugelay JL (2011) Digital image forensics: a booklet for beginners. Multimed Tool Appl 51(1):133–162

    Article  Google Scholar 

  68. Rubinstein M, Shamir A, Avidan S (2008) Improved seam carving for video retargeting. ACM Trans Graph 27(3):1–9

    Article  Google Scholar 

  69. Ryu SJ, Kirchner M, Lee MJ, Lee HK (2013) Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans Inform Forensics Secur 8(8):1355–1370

    Article  Google Scholar 

  70. Ryu SJ, Lee MJ, Lee HK (2010) Detection of copy-rotate-move forgery using Zernike moments. In: IEEE International workshop on Information Hiding (IH). Springer, Berlin, pp 51–65

  71. Sencar HT, Memon N (2008) Overview of State-of-the-Art in Digital Image Forensics. Algorithms, Architectures And Information Systems Security

  72. Sharif SA, Ali MA, Reqabi NA, Iqbal F, Baker T, Marrington A (2016) Magec: an image searching tool for detecting forged images in forensic investigation. In: 8th IFIP international conference on new technologies, mobility and security (NTMS), 1–6, Larnaca, Cyprus

  73. Shivakumar BL, Baboo S (2011) Detection of region duplication forgery in digital images using SURF. Int J Comput Sci Issues 8(4):199–205

    Google Scholar 

  74. Silva E, Carvalho T, Ferreira A, Rocha A (2015) Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J Vis Commun Image Represent 29(C):16–32

    Article  Google Scholar 

  75. Soni B, Das PK, Thounaojam DM (2018) Keypoints based enhanced multiple copy-move forgeries detection system using density-based spatial clustering of application with noise clustering algorithm. IET Image Process 12(11):2092–2099

    Article  Google Scholar 

  76. Stamm MC, Min W, Liu KJR (2013) Information forensics: an overview of the first decade. IEEE Access 1:167–200

    Article  Google Scholar 

  77. Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  MathSciNet  Google Scholar 

  78. Toldo R, Fusiello A (2008) Robust multiple structures estimation with j-Linkage. In: European conference on computer vision (ECCV), 537–547, Marseille, France

  79. Warif NBA, Wahab AWA, Idris MYI, Salleh R, Othman F (2017) Sift-symmetry: a robust detection method for copy-move forgery with reflection attack. J Vis Commun Image Represent 46:219– 232

    Article  Google Scholar 

  80. Xin L, Guo S, Yin J, Wang H, Xiong L, Sangaiah AK (2017) New cubic reference table based image steganography. Multimed Tool Appl 77(4):1–18

    Google Scholar 

  81. Xin L, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tool Appl 76(20):1–15

    Google Scholar 

  82. Xin L, Zheng Q, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  83. Xu B, Wang J, Liu G, Dai Y (2010) Image copy-move forgery detection based on SURF. In: International conference on multimedia information networking and security (MINES), 889–892, Nanjing, China

  84. Xue F, Ye Z, Lu W, Liu H, Li B (2017) Mse period based estimation of first quantization step in double compressed jpeg images. Signal Process Image Commun 57:76–83

    Article  Google Scholar 

  85. Yang F, Li J, Lu W, Weng J (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intell 59:73–83

    Article  Google Scholar 

  86. Yang H, Niu Y, Jiao L, Liu Y, Wang XY, Zhou Z (2018) Robust copy-move forgery detection based on multi-granularity superpixels matching. Multimed Tool Appl 77(11):13,615–13,641

    Article  Google Scholar 

  87. Yap PT, Jiang X, Kot AC (2010) Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans Pattern Anal Mach Intell 32(7):1259–70

    Article  Google Scholar 

  88. Yi Z, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Article  Google Scholar 

  89. Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on L0-regularization and kernel shape optimization. Multimed Tool Appl 77 (20):26,239–26,257

    Article  Google Scholar 

  90. Zhang Q, Lu W, Wang R, Li G (2018) Digital image splicing detection based on markov features in block dwt domain. Multimed Tool Appl 77(23):31,239–312,601

    Article  Google Scholar 

  91. Zhang Q, Lu W, Weng J (2016) Joint image splicing detection in dct and contourlet transform domain. J Vis Commun Image Represent 40:449–458

    Article  Google Scholar 

  92. Zhu Y, Shen X, Chen H (2016) Copy-move forgery detection based on scaled orb. Multimed Tool Appl 75(6):3221–3233

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. U1736118), the National Key R&D Program of China (No. 2017YFB0802500), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), the Key Project of Scientific Research Plan of Guangzhou (No. 201804020068), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45), the Science and Technology Planning Project of Guangdong Province (No.2017A040405051), the Alibaba Group through Alibaba Innovative Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Lu, W., Huang, X. et al. Region duplication detection based on hybrid feature and evaluative clustering. Multimed Tools Appl 78, 20739–20763 (2019). https://doi.org/10.1007/s11042-019-7342-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7342-9

Keywords