Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CSIDNet: Compact single image dehazing network for outdoor scene enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel deep learning-based single image dehazing network named as Compact Single Image Dehazing Network (CSIDNet) for outdoor scene enhancement. CSIDNet directly outputs a haze-free image from the given hazy input. The remarkable features of CSIDNet are that it has been designed only with three convolutional layers and it requires lesser number of images for training without diminishing the performance in comparison to the other commonly observed deep learning-based dehazing models. The performance of CSIDNet has been analyzed on natural hazy scene images and REalistic Single Image DEhazing (RESIDE) dataset. RESIDE dataset consists of Outdoor Training Set (OTS), Synthetic Objective Testing Set (SOTS), and real-world synthetic hazy images from Hybrid Subjective Testing Set (HSTS). The performance metrics used for comparison are Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index. The experimental results obtained using CSIDNet outperform several well known state-of-the-art dehazing methods in terms of PSNR and SSIM on images of SOTS and HSTS from RESIDE dataset. Additionally, the visual comparison shows that the dehazed images obtained using CSIDNet are more appealing with better edge preservation. Since the proposed network requires minimal resources and is faster to train along with lesser run-time, it is more practical and feasible for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282. https://doi.org/10.1109/TIP.2013.2262284

    Article  Google Scholar 

  2. Ancuti C, Ancuti CO (2014) Effective contrast-based dehazing for robust image matching. IEEE Geosci Remote Sens Lett 11(11):1871–1875. https://doi.org/10.1109/LGRS.2014.2312314

    Article  Google Scholar 

  3. Burger W, Burge MJ (2016) Digital image processing: an algorithmic introduction using java. Springer, London

    Book  Google Scholar 

  4. Cai B, Xu X, Jia K, Qing C, Tao D (2016) DehazeNet: An end-to-end system for single image haze removal. IEEE Trans Image Process 25 (11):5187–5198. https://doi.org/10.1109/TIP.2016.2598681

    Article  MathSciNet  Google Scholar 

  5. Chaudhry AM, Riaz MM, Ghafoor A (2018) A framework for outdoor RGB image enhancement and dehazing. IEEE Geosci Remote Sens Lett 15(6):932–936. https://doi.org/10.1109/LGRS.2018.2814016

    Article  Google Scholar 

  6. Fattal R (2008) Single image dehazing. ACM Transactions on Graphics (TOG) 27(3):1–9. https://doi.org/10.1145/1360612.1360671

    Article  Google Scholar 

  7. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd. Prentice-Hall, Inc. Upper Saddle River, New Jersey

    Google Scholar 

  8. He K, Sun J, Tang X (2010) Fast matting using large kernel matting Laplacian matrices. In: 2010 IEEE computer society conference on computer vision and pattern recognition, San Francisco, CA, USA, pp 2165–2172. https://doi.org/10.1109/CVPR.2010.5539896

  9. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353. https://doi.org/10.1109/TPAMI.2010.168

    Article  Google Scholar 

  10. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409. https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  11. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. In: 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile. https://doi.org/10.1109/ICCV.2015.123

  12. He K, Zhang X, Ren S, Sun J (2016a) Identity mappings in deep residual networks. In: European conference on computer vision (ECCV) 2016, pp 630–645. https://doi.org/10.1007/978-3-319-46493-0_38

  13. He K, Zhang X, Ren S, Sun J (2016b) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA. https://doi.org/10.1109/CVPR.2016.90

  14. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS’12 Proceedings of the 25th international conference on neural information processing systems - Volume 1, Lake Tahoe, Nevada, vol 1, pp 1097–1105

  15. Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to natural image matting. IEEE Trans Pattern Anal Mach Intell 30(2):228–242. https://doi.org/10.1109/TPAMI.2007.1177

    Article  Google Scholar 

  16. Li B, Peng X, Wang Z, Xu J, Feng D (2017) AOD-Net: All-in-one dehazing network. In: 2017 IEEE International conference on computer vision (ICCV), Venice, Italy, pp 4780–4788. https://doi.org/10.1109/ICCV.2017.511

  17. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, Wang Z (2019) Benchmarking single image dehazing and beyond. IEEE Trans Image Process 28(1):492–505. https://doi.org/10.1109/TIP.2018.2867951

    Article  MathSciNet  Google Scholar 

  18. Liu Z, Xiao B, Alrabeiah M, Wang K, Chen J (2019) Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process Lett 26(6):833–837. https://doi.org/10.1109/LSP.2019.2910403

    Article  Google Scholar 

  19. Long J, Shi Z, Tang W, Zhang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Letters 11(1):59–63. https://doi.org/10.1109/LGRS.2013.2245857

    Article  Google Scholar 

  20. Lu X, Ma C, Ni B, Yang X, Reid I, Yang MH (2018) Deep regression tracking with shrinkage loss. In: Proceedings of the European conference on computer vision (ECCV), pp 353–369

  21. Lu X, Ni B, Ma C, Yang X (2019) Learning transform-aware attentive network for object tracking. Neurocomputing 349:133–144. https://doi.org/10.1016/j.neucom.2019.02.021

    Article  Google Scholar 

  22. Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3623–3632

  23. Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: IEEE internationl conference on computer vision (ICCV), Sydney, NSW, Australia, pp 617–624

  24. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather. In: Proceedings IEEE conference on computer vision and pattern recognition, CVPR 2000 (Cat. No.PR00662), Hilton Head Island, SC, USA, vol 1, pp 598–605. https://doi.org/10.1109/CVPR.2000.855874

  25. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254. https://doi.org/10.1023/A:1016328200723

    Article  Google Scholar 

  26. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724. https://doi.org/10.1109/TPAMI.2003.1201821

    Article  Google Scholar 

  27. Qin X, Wang Z, Bai Y, Xie X, Jia H (2020) FFA-Net: Feature fusion attention network for single image dehazing. In: AAAI, pp 11908–11915

  28. Reinhard E, Adhikhmin M, Gooch B, Shirley P (2001) Color transfer between images. IEEE Comput Graph Appl 21(5):34–41. https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  29. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang MH (2016) Single image dehazing via multi-scale convolutional neural networks. European Conference Comput Vis 9906:154–169. https://doi.org/10.1007/978-3-319-46475-6_10

    Google Scholar 

  30. Ren W, Ma L, Zhang J, Pan J, Cao X, Liu W, Yang MH (2018) Gated fusion network for single image dehazing. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, Salt Lake City, UT, USA, pp 1–9. https://doi.org/10.1109/CVPR.2018.00343

  31. Rosolia U, Bruyne SD, Alleyne AG (2017) Autonomous vehicle control: a nonconvex approach for obstacle avoidance. IEEE Trans Control Syst Technol 25 (2):469–484. https://doi.org/10.1109/TCST.2016.2569468

    Article  Google Scholar 

  32. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, Kauai, HI, USA. https://doi.org/10.1109/CVPR.2001.990493

  33. Tan RT (2008) Visibility in bad weather from a single image. In: 2008 IEEE conference on computer vision and pattern recognition, Anchorage, AK, USA, pp 1–8. https://doi.org/10.1109/CVPR.2008.4587643

  34. Tang K, Yang J, Wang J (2014) Investigating haze-relevant features in a learning framework for image dehazing. In: 2014 IEEE Conference on computer vision and pattern recognition, Columbus, OH, USA, pp 2995–3002. https://doi.org/10.1109/CVPR.2014.383

  35. Tarel JP, Hautière N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th international conference on computer vision, Kyoto, Japan, pp 2201–2208. https://doi.org/10.1109/ICCV.2009.5459251

  36. Wang A, Wang W, Liu J, Gu N (2019) AIPNet: Image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans Image Process 28(1):381–393. https://doi.org/10.1109/TIP.2018.2868567

    Article  MathSciNet  Google Scholar 

  37. Yang X, Li H, Fan YL, Chen R (2019) Single image haze removal via region detection network. IEEE Trans Multimed 21(10):2545–2560. https://doi.org/10.1109/TMM.2019.2908375

    Article  Google Scholar 

  38. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533. https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teena Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Agrawal, I. & Verma, N.K. CSIDNet: Compact single image dehazing network for outdoor scene enhancement. Multimed Tools Appl 79, 30769–30784 (2020). https://doi.org/10.1007/s11042-020-09496-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09496-z

Keywords