Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust multiview feature selection via view weighted

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, combining the multiple views of data to perform feature selection has been popular. As the different views are the descriptions from different angles of the same data, the abundant information coming from multiple views instead of the single view can be used to improve the performance of identification. In this paper, through the view weighted strategy, we propose a novel robust supervised multiview feature selection method, in which the robust feature selection is performed under the effect of l2,1-norm. The proposed model has the following advantages. Firstly, different from the commonly used view concatenation that is liable to ignore the physical meaning of features and cause over-fitting, the proposed method divides the original space into several subspaces and performs feature selection in the subspaces, which can reduce the computational complexity. Secondly, the proposed method assigns different weights to views adaptively according to their importance, which shows the complementarity and the specificity of views. Then, the iterative algorithm is given to solve the proposed model, and in each iteration, the original large-scale problem is split into the small-scale subproblems due to the divided original space. The performance of the proposed method is compared with several related state-of-the-art methods on the widely used multiview datasets, and the experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements

  2. http://archive.ics.uci.edu/ml/datasets/Multiple+Features

  3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

  4. http://attributes.kyb.tuebingen.mpg.de/

References

  1. Ambika P (2018) Machine learning. Handbook of Research on Cloud and Fog Computing Infrastructures for Data Science, pp 209–230

  2. Cai X, Nie F, Huang H (2013) Exact top-k feature selection via l2,0-norm constraint. In: the 23rd international joint conference on artificial intelligence, pp 1240–1246

  3. Chen X, Zhou G, Chen Y (2017) Supervised multiview feature selection exploring homogeneity and heterogeneity with l1,2-norm and automatic view generation. IEEE Trans Geosci Remote Sens 55 (4):2074–2088

    Article  Google Scholar 

  4. Cheng X, Zhu Y, Song J, Wen G, He W (2017) A novel low-rank hypergraph feature selection for multi-view classification. Neurocomputing 253:115–121

    Article  Google Scholar 

  5. De Lange L, Ludick D (2019) Application of machine learning for antenna array failure analysis. In: The CEMi 2018-International workshop on computing, electromagnetics, and machine intelligence, pp 5–6

  6. Dhiraj Biswas R, Ghattamaraju N (2019) An effective analysis of deep learning based approaches for audio based feature extraction and its visualization. Multimedia Tools and Applications 78(17):23949–23972

    Article  Google Scholar 

  7. Ding C, Zhou D, He X, Zha H (2006) R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization. In: the 23rd international conference on machine learning, pp 281–288

  8. Du S, Ma Y, Li S, Ma Y (2017) Robust unsupervised feature selection via matrix factorization. Neurocomputing, pp 115–127

  9. Fang Y, Li Y, Lei C (2018) Hypergraph expressing low-rank feature selection algorithm. Multimedia Tools and Applications 77(22):29551–29572

    Article  Google Scholar 

  10. He W, Cheng X, Hu R, Zhu Y, Wen G (2017) Feature self-representation based hypergraph unsupervised feature selection via low-rank representation. Neurocomputing 253:127–134

    Article  Google Scholar 

  11. Hu H, Wang R, Nie F (2018) Fast unsupervised feature selection with anchor graph and l2,1-norm regularization. Multimedia Tools and Applications 77(17):22099–22113

    Article  Google Scholar 

  12. Krishnasamy G, Paramesran R (2019) Multiview laplacian semisupervised feature selection by leveraging shared knowledge among multiple tasks, Signal Process. Image Commun 70:68–78

    Google Scholar 

  13. Lan G, Hou C, Nie F, Luo T, Yi D (2018) Robust feature selection via simultaneous capped norm and sparse regularizer minimization. Neurocomputing 283:228–240

    Article  Google Scholar 

  14. Li Y, Shi X, Du C, Liu Y, Wen Y (2016) Manifold regularized multi-view feature selection for social image annotation. Neurocomputing 204:135–141

    Article  Google Scholar 

  15. Lin Q, Xue Y, Wen J, Zhong P (2019) A sharing multi-view feature selection method via alternating direction method of multipliers. Neurocomputing 333:124–134

    Article  Google Scholar 

  16. Liu H, Zheng Q, Li Z (2018) An efficient multi-feature SVM solver for complex event detection. Multimedia Tools and Applications 77(3):3509–3532

    Article  Google Scholar 

  17. Meng W, Yan H, Yang J (2019) Robust unsupervised feature selection by nonnegative sparse subspace learning. Neurocomputing 334:156–171

    Article  Google Scholar 

  18. Nie FH, Huang CX, Ding C (2010) Efficient and robust feature selection via joint l2,1-norms minimization. In: The 24th annual conference on neural information processing systems, pp 1813–1821

  19. Qian M, Zhai C (2013) Robust unsupervised feature selection. In: Proceedings of the international joint conference on artificial intelligence, pp 1621–1627

  20. Shi C, An G, Zhao R (2017) Multiview hessian semisupervised sparse feature selection for multimedia analysis. IEEE Trans Circuits Syst Video Technol 27(9):1947–1961

    Article  Google Scholar 

  21. Shi C, Duan C, Gu Z (2019) Semi-supervised feature selection analysis with structured multi-view sparse regularization. Neurocomputing 330:412–424

    Article  Google Scholar 

  22. Shi C, Duan C, Gu Z (2019) Semi-supervised feature selection analysis with structured multi-view sparse regularization. Neurocomputing 330:412–424

    Article  Google Scholar 

  23. Tan Y, Shum HPH, Chao F, Vijayakumar V, Yang L (2019) Curvature-based sparse rule base generation for fuzzy rule interpolation. J Intel Fuzzy Syst 36(5):4201–4214

    Article  Google Scholar 

  24. Tang C, Liu X, Li M (2018) Robust unsupervised feature selection via dual self-representation and manifold regularization. Knowl-Based Syst 145:1–14

    Article  Google Scholar 

  25. Wang H, Nie F, Huang H (2013) Multi-view clustering and feature learning via structured sparsity. In: The international conference on machine learning, pp 352–360

  26. Wang H, Nie F, Huang H, Ding C (2013) Heterogeneous visual features fusion via sparse multimodal machine. In: The computer vision and pattern recognition on IEEE, pp 3097–3102

  27. Wang H, Nie F, Huang H, Kim S, Nho K (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2):229–237

    Article  Google Scholar 

  28. Wang H, Nie F, Huang H, Risacher S, Ding C (2011) Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: the IEEE international conference on computer vision, computer society, pp 557–562

  29. Wang H, Nie F, Huang H, Risacher S, Saykin A (2012) Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics 28(12):I127–I136

    Article  Google Scholar 

  30. Wang S, Wang H (2017) Unsupervised feature selection via low-rank approximation and structure learning. Knowl-Based Syst 124:70–79

    Article  Google Scholar 

  31. Wang N, Xue Y, Lin Q, Zhong P (2019) Structured sparse multi-view feature selection based on weighted hinge loss. Multimedia Tools and Applications 78(11):15455–15481

    Article  Google Scholar 

  32. Xiao L, Sun Z, He R, Tan T (2013) Coupled feature selection for cross-sensor iris recognition. In: The IEEE sixth international conference on biometrics, Theory, Applications and Systems on IEEE, pp 1–6

  33. Xu Y, Wang C, Lai J (2016) Weighted multi-view clustering with feature selection. Pattern Recogn 53:25–35

    Article  Google Scholar 

  34. Yang M, Cheng D, Nie F (2019) Adaptive-weighting discriminative regression for multi-view classification. Pattern Recogn 88:236–245

    Article  Google Scholar 

  35. Yang X, He L, Qu D (2018) Semi-supervised minimum redundancy maximum relevance feature selection for audio classification. Multimedia Tools and Applications 77(1):713–739

    Article  Google Scholar 

  36. Zen Z, Wang X, Yan F (2018) Robust Discriminative multi-view K-means clustering with feature selection and group sparsity learning. Multimedia Tools and Applications 77(17):22433–22453

    Article  Google Scholar 

  37. Zhang J, Li C, Cao D (2018) Multi-label learning with label-specific features by resolving label correlations. Knowl-Based Syst 159:147–157

    Google Scholar 

  38. Zhang Q, Tian Y, Yang Y, Pan C (2014) Automatic spatial-spectral feature selection for hyperspectral image via discriminative sparse multimodal learning. IEEE Trans Geosci Remote Sens 53(1):261–279

    Article  Google Scholar 

  39. Zhang L, Zhang Q, Du B (2018) Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans Cybern 48(1):16–28

    Article  Google Scholar 

  40. Zhang L, Zhang Q, Zhang L, Tao D, Huang X, Du B (2015) Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recogn 48:3102–3112

    Article  Google Scholar 

  41. Zheng J, Yuan H, Lai L (2018) SGL-RFS: Semi-supervised graph learning robust feature selection. In: The 2018 international conference on wavelet analysis and pattern recognition, pp 155–160

  42. Zhong W, Jiang L, Zhang T (2019) Combining multilevel feature extraction and multi-loss learning for person re-identification. Neurocomputing 334:68–78

    Article  Google Scholar 

  43. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Transactions on Cybernetics 46(2):450–461

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The proof of Theorem 1

According to step 2 in Algorithm 1,

$$ \begin{array}{@{}rcl@{}} W^{t+1}=\min\limits_{W}&& \lambda_{1}\sum\limits_{v=1}^{m}\Vert W_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m}\Vert W_{v}\Vert_{F} \\&&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(21)

Since the following equations hold

$$ \begin{array}{@{}rcl@{}} \|W_{v}\|_{2,1}= tr\left( W_{v}^{\top} D_{1v} W_{v}\right) \end{array} $$
(22)
$$ \begin{array}{@{}rcl@{}} \|W_{v}\|_{F}= tr\left( W_{v}^{\top} D_{2v} W_{v}\right) \end{array} $$
(23)

where D1v and D2v are given in (9), (21) can be transformed into

$$ \begin{array}{@{}rcl@{}} W^{t+1}=\min\limits_{W}&&\lambda_{1}\sum\limits_{v=1}^{m}tr\left( W_{v}^{\top} D^{t}_{1v} W_{v}\right)+\lambda_{2}{\sum}_{v=1}^{m}tr\left( W_{v}^{\top} D^{t}_{2v} W_{v}\right) \\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(24)

therefore,

$$ \begin{array}{@{}rcl@{}} &&\lambda_{1}\sum\limits_{v=1}^{m} tr\left( W_{v}^{t+1^{\top}} D^{t}_{1v} W^{t+1}_{v}\right)+\lambda_{2}\sum\limits_{v=1}^{m} tr\left( W_{v}^{t+1^{\top}} D^{t}_{2v} W^{t+1}_{v}\right) \\ &&+ \sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&&\lambda_{1}\sum\limits_{v=1}^{m}tr\left( W_{v}^{t^{\top}} D^{t}_{1v} {W^{t}_{v}}\right)+\lambda_{2}{\sum}_{v=1}^{m}tr\left( W_{v}^{t^{\top}} D^{t}_{2v} {W^{t}_{v}}\right) \\&&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(25)

Substituting D1v and D2v with definitions and the following inequalities can be obtained

$$ \begin{array}{@{}rcl@{}} &&\lambda_{1}\sum\limits_{i=1}^{d} \frac{\|\mathbf{w}^{i^{t+1}}\|_{2}^{2}}{2\|\mathbf{w}^{i^{t}}\|_{2}}+\lambda_{2}\sum\limits_{v=1}^{m} \frac{\|W_{v}^{t+1}\|_{F}^{2}}{2\|{W_{v}^{t}}\|_{F}}+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&&\lambda_{1}\sum\limits_{i=1}^{d} \frac{\|\mathbf{w}^{i^{t}}\|_{2}^{2}}{2\|\mathbf{w}^{i^{t}}\|_{2}}+\lambda_{2}\sum\limits_{v=1}^{m} \frac{\|{W_{v}^{t}}\|_{F}^{2}}{2\|{W_{v}^{t}}\|_{F}} +\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(26)

According to Lemma 1. we replace a and b with \(\|\mathbf {w}^{i^{t+1}}\|_{2}^{2}\) (or \(\|W_{v}^{t+1}\|_{F}^{2}\) ) and \(\|\mathbf {w}^{i^{t}}\|_{2}^{2}\) (or \(\|{W_{v}^{t}}\|_{F}^{2}\) ), respectively, then the following inequalities can be obtained

$$ \begin{array}{@{}rcl@{}} \|\mathbf{w}^{i^{t+1}}\|_{2}- \frac{\|\mathbf{w}^{i^{t+1}}\|_{2}^{2}}{2\|\mathbf{w}^{i^{t}}\|_{2}}\leq \|\mathbf{w}^{i^{t}}\|_{2} - \frac{\|\mathbf{w}^{i^{t}}\|_{2}^{2}}{2\|\mathbf{w}^{i^{t}}\|_{2}} \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} \|W_{v}^{t+1}\|_{F} - \frac{\|W_{v}^{t+1}\|_{F}^{2}}{2\|{W_{v}^{t}}\|_{F}}\leq \|{W_{v}^{t}}\|_{F} - \frac{\|{W_{v}^{t}}\|_{F}^{2}}{2\|{W_{v}^{t}}\|_{F}} \end{array} $$
(28)

Adding (26)–(28) on both sides (note that (27) is repeated for 1 ≤ id and (28) is repeated for 1 ≤ vm), gives

$$ \begin{array}{@{}rcl@{}} && \lambda_{1}\sum\limits_{i=1}^{d} \|\mathbf{w}^{i^{t+1}}\|_{2}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} +\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&& \lambda_{1}\sum\limits_{i=1}^{d} \|\mathbf{w}^{i^{t}}\|_{2}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F} +\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(29)

Since

$$ \begin{array}{@{}rcl@{}} \sum\limits_{v=1}^{m}\Vert W_{v}\Vert_{2,1}=\sum\limits_{i=1}^{d} \|\mathbf{w}^{i}\|_{2} \end{array} $$
(30)

Equation (29) can be transformed as follows

$$ \begin{array}{@{}rcl@{}} &&\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} +\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&&\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F}+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(31)

According to the step 4 in Algorithm 1,

$$ \begin{array}{@{}rcl@{}} E_{v}^{t+1}=\min\limits_{E_{v}}\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert E_{v}\Vert_{2,1}+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E_{v}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(32)

thus,

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}}\\ &&\leq\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert {E^{t}_{v}}\Vert_{2,1}+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(33)

Combining Eqs. (31) and (33), the following inequality can be obtained

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} \\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert {E^{t}_{v}}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F}\\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(34)

According to the step 5 in Algorithm 1,

$$ \begin{array}{@{}rcl@{}} \theta_{v}^{t+1}=\min\limits_{\theta_{v}}\sum\limits_{v=1}^{m} (\theta_{v})^{p} \Vert E^{t+1}_{v}\Vert_{2,1} \end{array} $$
(35)

thus,

$$ \begin{array}{@{}rcl@{}} \sum\limits_{v=1}^{m} (\theta_{v}^{t+1})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}\leq\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert E^{t+1}_{v}\Vert_{2,1} \end{array} $$
(36)

Combining (34) and (36), the following inequality can be obtained

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} (\theta_{v}^{t+1})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} \\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \\ \leq&&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert {E^{t}_{v}}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F}\\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(37)

According to the step 6 in Algorithm 1,

$$ \begin{array}{@{}rcl@{}} {\Lambda}_{v}^{t+1}=\min\limits_{{\Lambda}_{v}}\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{\Lambda}_{v}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{\Lambda}_{v}{\Vert_{F}^{2}} \end{array} $$
(38)

thus,

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \\ \leq&&\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(39)

Combining (37) and (39), the following inequality can be obtained

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} (\theta_{v}^{t+1})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} \\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \\ \leq&&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert {E^{t}_{v}}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F}\\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(40)

According to the step 7 in Algorithm 1,

$$ \begin{array}{@{}rcl@{}} \mu^{t+1}=\min\limits_{\mu}\sum\limits_{v=1}^{m} \frac{\mu}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu}{2}\Vert\frac{1}{\mu}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \end{array} $$
(41)

thus,

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} \frac{\mu^{t+1}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t+1}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t+1}}{2}\Vert\frac{1}{\mu^{t+1}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \\ \leq&&{\sum}_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \end{array} $$
(42)

Combining (40) and (42), the following inequality can be obtained

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} (\theta_{v}^{t+1})^{p} \Vert E^{t+1}_{v}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} \\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t+1}}{2} \Vert X_{v}^{\top} W^{t+1}_{v}-Y-E^{t+1}_{v}+\frac{1}{\mu^{t+1}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t+1}}{2}\Vert\frac{1}{\mu^{t+1}}{\Lambda}_{v}^{t+1}{\Vert_{F}^{2}} \\ \leq&&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert {E^{t}_{v}}\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F}\\ &&+\sum\limits_{v=1}^{m} \frac{\mu^{t}}{2} \Vert X_{v}^{\top} {W^{t}_{v}}-Y-{E^{t}_{v}}+\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}}-\sum\limits_{v=1}^{m}\frac{\mu^{t}}{2}\Vert\frac{1}{\mu^{t}}{{\Lambda}_{v}^{t}}{\Vert_{F}^{2}} \end{array} $$
(43)

Since \( X_{v}^{\top } W_{v}-Y\) is replaced with Ev before, (43) can be transformed as follows

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{v=1}^{m} (\theta_{v}^{t+1})^{p} \Vert X_{v}^{{t+1}\top} W_{v}^{t+1}-Y\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert W^{t+1}_{v}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|W_{v}^{t+1}\|_{F} \\ \leq&&\sum\limits_{v=1}^{m} ({\theta_{v}^{t}})^{p} \Vert X_{v}^{{t}\top} {W_{v}^{t}}-Y\Vert_{2,1}+\lambda_{1}\sum\limits_{v=1}^{m}\Vert {W^{t}_{v}}\Vert_{2,1}+\lambda_{2}\sum\limits_{v=1}^{m} \|{W_{v}^{t}}\|_{F} \end{array} $$
(44)

Thus,

$$ \begin{array}{@{}rcl@{}} Obj(t+1)\leq Obj(t) \end{array} $$
(45)

Equation (45) indicates that the value of the objective function (2) is decreased in each iteration of the Algorithm 1. And beacuse (2) is greater than zero, Theorem 1 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Zhong, P., Xu, Y. et al. Robust multiview feature selection via view weighted. Multimed Tools Appl 80, 1503–1527 (2021). https://doi.org/10.1007/s11042-020-09617-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09617-8

Keywords