Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Automated integration of extract-based CFD results with AR/VR in engineering education for practitioners

  • 1198: Advances in Multimedia Interaction and Visualization
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) simulations can provide meaningful technical content in engineering education, broad engineering and business. However, computationally demanding data production and complex data processing environments of CFD simulations turn them into esoteric tools for potential non-expert users. This consequently limits applications and communications of CFD simulations and results. Augmented and virtual reality (AR/VR) technologies are opening new gates for visualization and interaction techniques. Despite the many recent attempts, the literature lacks an inclusive system development procedure for CFD simulations with AR/VR. The present study proposes a component-oriented system architecture to generate dedicated workflows for any kind of AR/VR environment supported by CFD simulations. The study further explores the potential of data processing options throughout the preparation of the simulation dataset with AR/VR. An automated data coupling strategy is additionally introduced to ease multiplatform integration. We provide an integration strategy with simple, easy-to-implement, end-to-end, automated and free-to-use utilities that the practitioners can readily pursue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://github.com/sersolmaz/CFD_AR_VR

References

  1. Badías A, Curtit S, González D, Alfaro I, Chinesta F, Cueto E (2019) An augmented reality platform for interactive aerodynamic design and analysis. Int J Numer Methods Eng 120:125–138. https://doi.org/10.1002/nme.6127

    Article  MathSciNet  Google Scholar 

  2. Berger M, Cristie V (2015) CFD post-processing in Unity3D. Procedia Comput Sci 51:2913–2922. https://doi.org/10.1016/j.procs.2015.05.476

    Article  Google Scholar 

  3. Bergonzi L, Colombo G, Redaelli D, Lorusso M (2019) An augmented reality approach to visualize biomedical images. CAD&A 16:1195–1208. https://doi.org/10.14733/cadaps.2019.1195-1208

    Article  Google Scholar 

  4. Blach R, Landauer J, Rösch A, Simon A (1998) A highly flexible virtual reality system. Futur Gener Comput Syst 14:167–178. https://doi.org/10.1016/S0167-739X(98)00019-3

    Article  Google Scholar 

  5. Cha M, Han S, Lee J, Choi B (2012) A virtual reality based fire training simulator integrated with fire dynamics data. Fire Saf J 50:12–24. https://doi.org/10.1016/j.firesaf.2012.01.004

    Article  Google Scholar 

  6. Cordeil M, Cunningham A, Bach B et al (2019) IATK: An Immersive Analytics Toolkit. In: 2019 IEEE conference on virtual reality and 3D user interfaces (VR). IEEE, Osaka, pp 200–209

    Google Scholar 

  7. Dong S, Behzadan AH, Chen F, Kamat VR (2013) Collaborative visualization of engineering processes using tabletop augmented reality. Adv Eng Softw 55:45–55. https://doi.org/10.1016/j.advengsoft.2012.09.001

    Article  Google Scholar 

  8. Duque EP, Imlay ST, Ahern S et al (2016) NASA CFD vision 2030 visualization and knowledge extraction: panel summary from AIAA AVIATION 2015 conference. In: 54th AIAA aerospace sciences meeting. American Institute of Aeronautics and Astronautics, San Diego, California, USA

    Google Scholar 

  9. El Beheiry M, Doutreligne S, Caporal C et al (2019) Virtual reality: beyond visualization. J Mol Biol 431:1315–1321. https://doi.org/10.1016/j.jmb.2019.01.033

    Article  Google Scholar 

  10. Fukuda T, Yokoi K, Yabuki N, Motamedi A (2018) An indoor thermal environment design system for renovation using augmented reality. J Comput Des Eng 6:179–188. https://doi.org/10.1016/j.jcde.2018.05.007

    Article  Google Scholar 

  11. García-Hernández RJ, Kranzlmüller D (2019) NOMAD VR: multiplatform virtual reality viewer for chemistry simulations. Comput Phys Commun 237:230–237. https://doi.org/10.1016/j.cpc.2018.11.013

    Article  Google Scholar 

  12. Ge W, Guo L, Liu X, Meng F, Xu J, Huang WL, Li J (2019) Mesoscience-based virtual process engineering. Comput Chem Eng 126:68–82. https://doi.org/10.1016/j.compchemeng.2019.03.042

    Article  Google Scholar 

  13. Gianni D (2014) Modeling and simulation-based systems engineering handbook, 1st ed. CRC Press, Systems engineering, architecture, and simulation

  14. Ham Y, Golparvar-Fard M (2013) EPAR: energy performance augmented reality models for identification of building energy performance deviations between actual measurements and simulation results. Energ Buildings 63:15–28. https://doi.org/10.1016/j.enbuild.2013.02.054

    Article  Google Scholar 

  15. Hamilton ER, Rosenberg JM, Akcaoglu M (2016) The substitution augmentation modification redefinition (SAMR) model: a critical review and suggestions for its use. TechTrends 60:433–441. https://doi.org/10.1007/s11528-016-0091-y

    Article  Google Scholar 

  16. Harwood ARG (2019) GPU-powered, interactive flow simulation on a peer-to-peer group of mobile devices. Adv Eng Softw 133:39–51. https://doi.org/10.1016/j.advengsoft.2019.04.003

    Article  Google Scholar 

  17. Harwood ARG, Revell AJ (2017) Parallelisation of an interactive lattice-Boltzmann method on an android-powered mobile device. Adv Eng Softw 104:38–50. https://doi.org/10.1016/j.advengsoft.2016.11.005

    Article  Google Scholar 

  18. Harwood ARG, Revell AJ (2018) Interactive flow simulation using Tegra-powered mobile devices. Adv Eng Softw 115:363–373. https://doi.org/10.1016/j.advengsoft.2017.10.005

    Article  Google Scholar 

  19. He Z, You L, Liu RW, Yang F, Ma J, Xiong N (2019) A cloud-based real time polluted gas spread simulation approach on virtual reality networking. IEEE Access 7:22532–22540. https://doi.org/10.1109/ACCESS.2019.2893919

    Article  Google Scholar 

  20. Horton BK, Kalia RK, Moen E, Nakano A, Nomura KI, Qian M, Vashishta P, Hafreager A (2019) Game-engine-assisted research platform for scientific computing (GEARS) in virtual reality. SoftwareX 9:112–116. https://doi.org/10.1016/j.softx.2019.01.009

    Article  Google Scholar 

  21. Huang Z, Gong G, Han L (2014) Physically-based modeling, simulation and rendering of fire for computer animation. Multimed Tools Appl 71:1283–1309. https://doi.org/10.1007/s11042-012-1273-z

    Article  Google Scholar 

  22. Huang J, Ong SK, Nee AY-C (2019) An approach for augmented learning of finite element analysis. Comput Appl Eng Educ 27:921–933. https://doi.org/10.1002/cae.22125

    Article  Google Scholar 

  23. Julin A, Jaalama K, Virtanen J-P, Maksimainen M, Kurkela M, Hyyppä J, Hyyppä H (2019) Automated multi-sensor 3D reconstruction for the web. IJGI 8:221. https://doi.org/10.3390/ijgi8050221

    Article  Google Scholar 

  24. Jung K, Nguyen VT, Yoo S-C, et al (2020) PalmitoAR: the last Battle of the U.S. civil war Reenacted using augmented reality. IJGI 9:75. https://doi.org/10.3390/ijgi9020075

  25. Jüttner M, Zhao N, Grabmaier S (2017) A standalone Interface for web-based virtual reality of calculated fields. In: proceedings of the 2017 COMSOL conference in Rotterdam

  26. Karmonik C, Boone TB, Khavari R (2018) Workflow for visualization of neuroimaging data with an augmented reality device. J Digit Imaging 31:26–31. https://doi.org/10.1007/s10278-017-9991-4

    Article  Google Scholar 

  27. Kim R, Kim J, Lee I, Yeo UH, Lee SY (2019) Development of a VR simulator for educating CFD-computed internal environment of piglet house. Biosyst Eng 188:243–264. https://doi.org/10.1016/j.biosystemseng.2019.10.024

    Article  Google Scholar 

  28. Kim M, Yi S, Jung D, Park S, Seo D (2018) Augmented-reality visualization of aerodynamics simulation in sustainable cloud computing. Sustainability 10:1362. https://doi.org/10.3390/su10051362

    Article  Google Scholar 

  29. Kirby AC, Yang Z, Mavriplis DJ et al (2018) Visualization and Data Analytics Challenges of Large-Scale High-Fidelity Numerical Simulations of Wind Energy Applications. In: 2018 AIAA aerospace sciences meeting. American Institute of Aeronautics and Astronautics, Kissimmee, Florida

    Book  Google Scholar 

  30. Lai JWM, Bower M (2019) How is the use of technology in education evaluated? A systematic review. Comput Educ 133:27–42. https://doi.org/10.1016/j.compedu.2019.01.010

    Article  Google Scholar 

  31. Lau KK, Cola SD (2017) An introduction to component-based software development. World Scientific, Singapore

    Book  Google Scholar 

  32. Lemahieu W (2018) Principles of database management: the practical guide to storing, managing and Analyzing big and small Data. Cambridge University Press

  33. Li J (2015) Approaching virtual process engineering with exploring mesoscience. Chem Eng J 278:541–555. https://doi.org/10.1016/j.cej.2014.10.005

    Article  Google Scholar 

  34. Li W, Nee A, Ong S (2017) A state-of-the-art review of augmented reality in engineering analysis and simulation. Multimodal Technol Interact 1:17. https://doi.org/10.3390/mti1030017

    Article  Google Scholar 

  35. Lin J-R, Cao J, Zhang J-P, van Treeck C, Frisch J (2019) Visualization of indoor thermal environment on mobile devices based on augmented reality and computational fluid dynamics. Autom Constr 103:26–40. https://doi.org/10.1016/j.autcon.2019.02.007

    Article  Google Scholar 

  36. Martins P, Pinto S, Andre A (2019) Interactive DEMOnstration of medical simulations using a virtual reality approach: application to the male urinary system. In: 2019 5th experiment International conference (exp.at’19). IEEE, Funchal (Madeira Island), Portugal, pp 251–252

    Google Scholar 

  37. Moloney J, Globa A, Wang R, Khoo C (2019) Principles for the application of mixed reality as pre-occupancy evaluation tools (P-OET) at the early design stages. Architectural science review 1–10. https://doi.org/10.1080/00038628.2019.1675138

  38. Natephra W, Motamedi A, Yabuki N, Fukuda T (2017) Integrating 4D thermal information with BIM for building envelope thermal performance analysis and thermal comfort evaluation in naturally ventilated environments. Build Environ 124:194–208. https://doi.org/10.1016/j.buildenv.2017.08.004

    Article  Google Scholar 

  39. Quam DJ, Gundert TJ, Ellwein L, Larkee CE, Hayden P, Migrino RQ, Otake H, LaDisa JF Jr (2015) Immersive visualization for enhanced computational fluid dynamics analysis. J Biomech Eng 137:031004. https://doi.org/10.1115/1.4029017

    Article  Google Scholar 

  40. Saitoh T, Noguchi G, Inoue T (2018) Tsunami run-up simulation using particle method and its visualization with Unity. In: THE 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS (ICCM2018)

  41. Salehi V, Wang S (2018) Web-based visualization of 3D factory layout from hybrid Modeling of CAD and point cloud on virtual globe DTX solution. CAD&A 16:243–255. https://doi.org/10.14733/cadaps.2019.243-255

    Article  Google Scholar 

  42. Sastry L, Boyd DRS (1998) Virtual environments for engineering applications. Virtual Reality 3:235–244. https://doi.org/10.1007/BF01408704

    Article  Google Scholar 

  43. Schilling A, Bolling J, Nagel C (2016) Using glTF for streaming CityGML 3D city models. Proceedings of the 21st International conference on Web3D technology - Web3D ‘16. ACM Press, Anaheim, California, pp 109–116. https://doi.org/10.1145/2945292.2945312

  44. Sicat R, Li J, Choi J, Cordeil M, Jeong WK, Bach B, Pfister H (2019) DXR: a toolkit for building immersive data visualizations. IEEE Trans Vis Comput Graph 25:715–725. https://doi.org/10.1109/TVCG.2018.2865152

    Article  Google Scholar 

  45. Slotnick J, Khodadoust A, Alonso J, et al (2013) CFD vision 2030 study: a path to revolutionary computational Aerosciences. NASA Langley Research Center Buildings:

  46. Stam J (1999) Stable Fluids. SIGGRAPH ‘99 Proceedings of the 26th annual conference on Computer graphics and interactive techniques 121–128. https://doi.org/10.1145/311535.311548

  47. Su S, Perry V, Bravo L, Kase S, Roy H, Cox K, R. Dasari V (2020) Virtual and augmented reality applications to support data analysis and assessment of science and engineering. Comput Sci Eng 22:27–39. https://doi.org/10.1109/MCSE.2020.2971188

    Article  Google Scholar 

  48. Suh A, Prophet J (2018) The state of immersive technology research: a literature analysis. Comput Hum Behav 86:77–90. https://doi.org/10.1016/j.chb.2018.04.019

    Article  Google Scholar 

  49. Tamura Y, Nakamura H, Fujiwara S (2016) An intuitive Interface for visualizing numerical data in a head-mounted display with gesture control. Plasma Fusion Res 11:2406060–2406060. https://doi.org/10.1585/pfr.11.2406060

    Article  Google Scholar 

  50. Wasfy TM, Noor AK (2001) Visualization of CFD results in immersive virtual environments. Adv Eng Softw 32:717–730. https://doi.org/10.1016/S0965-9978(01)00020-5

    Article  MATH  Google Scholar 

  51. Wheeler G, Deng S, Toussaint N, Pushparajah K, Schnabel JA, Simpson JM, Gomez A (2018) Virtual interaction and visualisation of 3D medical imaging data with VTK and Unity. Healthcare Technol Lett 5:148–153. https://doi.org/10.1049/htl.2018.5064

    Article  Google Scholar 

  52. Woods JW (2006) Multidimensional signal, image, and video processing and coding. Elsevier/Academic Press, Amsterdam ; Boston, Mass

    Google Scholar 

  53. Xu Z, Lu XZ, Guan H, Chen C, Ren AZ (2014) A virtual reality based fire training simulator with smoke hazard assessment capacity. Adv Eng Softw 68:1–8. https://doi.org/10.1016/j.advengsoft.2013.10.004

    Article  Google Scholar 

  54. Xu Z, Zhang L, Li H, Lin YH, Yin S (2020) Combining IFC and 3D tiles to create 3D visualization for building information modeling. Autom Constr 109:102995. https://doi.org/10.1016/j.autcon.2019.102995

    Article  Google Scholar 

  55. Yan J, Kensek K, Konis K, Noble D (2020) CFD visualization in a virtual reality environment using building information Modeling tools. Buildings 10:21. https://doi.org/10.3390/buildings10120229

    Article  Google Scholar 

  56. Yao J, Lin Y, Zhao Y, et al (2018) Augmented reality technology based wind environment visualization. In: learning, adapting and prototyping - proceedings of the 23rd CAADRIA conference. Pp 369–377

  57. Yu Y, Duan M, Sun C, Zhong Z, Liu H (2017) A virtual reality simulation for coordination and interaction based on dynamics calculation. Ships and Offshore Struct 12:873–884. https://doi.org/10.1080/17445302.2017.1293762

    Article  Google Scholar 

  58. Zhang F, Wei Q, Xu L (2020) An fast simulation tool for fluid animation in VR application based on GPUs. Multimed Tools Appl 79:16683–16706. https://doi.org/10.1007/s11042-019-08002-4

    Article  Google Scholar 

  59. Zhao S, Jin S, Ai C, Zhang N (2019) Visual analysis of three-dimensional flow field based on WebVR. J Hydroinf 21:671–686. https://doi.org/10.2166/hydro.2019.101

    Article  Google Scholar 

  60. Zhao S, Zhang L, DeAngelis E (2019) Using augmented reality and mixed reality to interpret design choices of high-performance buildings. Pp 435–441

  61. Zhu Y, Fukuda T, Yabuki N (2019) Integrating animated computational fluid dynamics into mixed reality for building-renovation design. Technologies 8:4. https://doi.org/10.3390/technologies8010004

    Article  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement 812716. This publication reflects only the author’s view exempting the community from any liability. Project website: https://charming-etn.eu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Van Gerven.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The custom code developed in this work is available at https://github.com/sersolmaz/CFD_AR_VR.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, S., Van Gerven, T. Automated integration of extract-based CFD results with AR/VR in engineering education for practitioners. Multimed Tools Appl 81, 14869–14891 (2022). https://doi.org/10.1007/s11042-021-10621-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10621-9

Keywords