Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Ridge regression neural network for pediatric bone age assessment

  • 1155T: Advanced machine learning algorithms for biomedical data and imaging
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Bone age is an important measure for assessing the skeletal and biological maturity of children. Delayed or increased bone age is a serious concern for pediatricians, and needs to be accurately assessed in a bid to determine whether bone maturity is occurring at a rate consistent with chronological age. In this paper, we introduce a unified deep learning framework for bone age assessment using instance segmentation and ridge regression. The proposed approach consists of two integrated stages. In the first stage, we employ an image annotation and segmentation model to annotate and segment the hand from the radiographic image, followed by background removal. In the second stage, we design a regression neural network architecture composed of a pre-trained convolutional neural network for learning salient features from the segmented pediatric hand radiographs and a ridge regression output layer for predicting the bone age. Experimental evaluation on a dataset of hand radiographs demonstrates the competitive performance of our approach in comparison with existing deep learning based methods for bone age assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://www.robots.ox.ac.uk/~vgg/software/via/via-2.0.4.html

References

  1. Alshamrani K, Offiah A (2019) Applicability of two commonly used bone age assessment methods to twenty-first century UK children. Eur Radiol 1–10

  2. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  MathSciNet  Google Scholar 

  3. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian V (2018) Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In: Proc. IEEE Winter conference on applications of computer vision

  4. Chen X, Li J, Zhang Y, Lu Y, Liu S (2019) Automatic feature extraction in X-ray image based on deep learning approach for determination of bone age. Future Generation Computer Systems 1–7

  5. Gilsanz V, Ratib O (2012) Hand bone age: A digital atlas of skeletal maturity. Springer, Berlin

    Book  Google Scholar 

  6. Greulich W, Pyle S (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford

    Book  Google Scholar 

  7. Halabi S, Prevedello L, Kalpathy-Cramer J, Mamonov A, Bilbily A, Cicero M, Pan I, Pereira L, Sousa R, Abdala N, Kitamura F, Thodberg H, Chen L, Shih G, Andriole K, Kohli M, Erickson B, Flanders AAE (2019) The RSNA pediatric bone age machine learning challenge. Radiology 290 (2):498– 503

    Article  Google Scholar 

  8. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proc IEEE International conference on computer vision, pp 2961–2969

  9. Iglovikov V, Rakhlin A, Kalinin A (2018) A Shvets, Pediatric bone age assessment using deep convolutional neural networks. In: Deep learning in medical image analysis and multimodal learning for clinical decision support, pp 300–308

  10. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2017) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1):313–322

    Article  Google Scholar 

  11. Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4):427–441

    Article  Google Scholar 

  12. Liu R, Jia Y, He X, Li Z, Cai J, Li H, Yang X (2020) Pediatric hand radiograph segmentation for bone age assessment. International Journal of Biomedical Imaging

  13. Liu B, Zhang Y, Chu M, Bai X, Zhou F (2019) Bone age assessment based on rank-monotonicity enhanced ranking CNN. IEEE Access 7:120976–120983

    Article  Google Scholar 

  14. Martin D, Wit J, Hochberg Z, Savendahl L, van Rijn R, Fricke O, Cameron N, Caliebe J, Hertel T, Kiepe D, Albertsson-Wikland K, Thodberg H, Binder G, Ranke M (2011) The use of bone age in clinical practice - part 1. Horm Res Paediatr 76(1):1–9

    Article  Google Scholar 

  15. Omeiza D, Speakman S, Cintas C, Weldermariam K (2019) Smooth Grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models. arXiv:1908.01224

  16. Pan X, Zhao Y, Chen H, Wei D, Zhao C, Wei Z (2020) Fully automated bone age assessment on large-scale hand X-ray dataset. International Journal of Biomedical Imaging

  17. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proc international conference on medical image computing and computer-assisted intervention, pp 234–241

  18. Satoh M (2015) Bone age: assessment methods and clinical applications. Clin Pediatr Endocrinol 24(4):143–152

    Article  Google Scholar 

  19. Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117

    Article  Google Scholar 

  20. Selvaraju R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proc IEEE International conference on computer vision, pp 618–626

  21. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proc international conference on learning representations

  22. Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M (2017) SmoothGrad: removing noise by adding noise, arXiv:1706.03825

  23. Somkantha K, Theera-Umpon N, Auephanwiriyakul S (2011) Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression. J Digit Imaging 24(6):1044–1058

    Article  Google Scholar 

  24. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51

    Article  Google Scholar 

  25. Tanner J, Whitehouse R, Cameron N, Marshall W (1975) Assessment of skeletal maturity and prediction of adult height (TW2 method). Academic Press, London

    Google Scholar 

  26. Thodberg H, Kreiborg S, Juul A, Pedersen K (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1):52–66

    Article  Google Scholar 

  27. Tong C, Liang B, Li J, Zheng Z (2018) A deep automated skeletal bone age assessment model with heterogeneous features learning. J Med Syst 42(12):249

    Article  Google Scholar 

  28. Van Steenkiste T, Ruyssinck J, Janssens O, Vandersmissen B, Vandecasteele F, Devolder P, Achten E, Van Hoecke S, Deschrijver D, Dhaene T (2018) Automated assessment of bone age using deep learning and Gaussian process regression. In: Proc annual international conference of the ieee engineering in medicine and biology society, pp 674–677

  29. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R (2017) Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proc. IEEE conference on computer vision and pattern recognition

  30. Wibisono A, Mursanto P (2020) Multi region-based feature connected layer (RB-FCL) of deep learning models for bone age assessment. Journal of Big Data

  31. Wu E, Kong B, Wang X, Bai J, Lu Y, Gao F, Zhang S, Cao K, Song Q, Lyu S, Yin Y (2019) Residual attention based network for hand bone age assessment. In: Proc IEEE international symposium on biomedical imaging, pp 1158–1161

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salim, I., Hamza, A.B. Ridge regression neural network for pediatric bone age assessment. Multimed Tools Appl 80, 30461–30478 (2021). https://doi.org/10.1007/s11042-021-10935-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10935-8

Keywords