Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Urban land cover and land use classification using multispectral sentinal-2 imagery

  • 1211: AIoT Support and Applications with Multimedia
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, remote sensing data contains ample information about landcover due to the advancements in remote sensing technology. Humans can utilize this data in agriculture, forestry, disaster management, urbanization, and many more applications. The European Space Agency’s Sentinel −2 satellite delivers freely accessible multispectral remote sensing data of different high spatial resolutions, which can be used in various remote sensing fields to extract meaningful information. In this work, the multispectral imagery of 10 m spatial resolution of a densely populated urban area, obtained from sentinel-2, is classified using Support vector machine (SVM), artificial neural network (ANN) and maximum likelihood classifier (MLC). The results obtained using the classifiers SVM, ANN and MLC are compared in terms of the kappa coefficient, overall accuracy and accuracy of users and producers. An area of 14 × 14 km2 of the South-West district of Delhi (India) is chosen for this study with five urban land-cover and land-use(ULCLU) classes, namely roads, water, buildings, vegetation, and barren land, with a training sample size of 150 pixels per class. The highly complex nature (high population density, urbanization) of the study area makes the classification task challenging and appealing. All the classification methods have more than 90% accuracy, but SVM obtains the best performance with 98.05% accuracy. The work presented in this paper can support policymakers in making better decisions and extracting meaningful information about ULCLU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709. https://doi.org/10.1080/014311697218700

    Article  Google Scholar 

  2. Census of India (n.d.) www.census2011.co.in. Accessed 27 Sep 2020

  3. Chadchan J, Shankar R (2012) An analysis of urban growth trends in the post-economic reforms period in India. Int J Sustain Built Environ 1(1):36–49. https://doi.org/10.1016/j.ijsbe.2012.05.001

    Article  Google Scholar 

  4. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  Google Scholar 

  5. Craig Dobson M, Ulaby FT, Pierce LE (1995) Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote Sens Environ 51(1):199–214. https://doi.org/10.1016/0034-4257(94)00075-X

    Article  Google Scholar 

  6. Dutta D, Rahman A, Paul SK, Kundu A (2020) Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. Ann Reg Sci 65(1):67–82. https://doi.org/10.1007/s00168-020-00974-8

    Article  Google Scholar 

  7. earthexplorer (2020) https://earthexplorer.usgs.gov/. Accessed 27 Sep 2020

  8. Gašparović M, Jogun T (2018) The effect of fusing Sentinel-2 bands on land-cover classification. Int J Remote Sens 39(3):822–841. https://doi.org/10.1080/01431161.2017.1392640

    Article  Google Scholar 

  9. Goldblatt R, Stuhlmacher MF, Tellman B, Clinton N, Hanson G, Georgescu M, Wang C, Serrano-Candela F, Khandelwal AK, Cheng WH, Balling RC Jr (2018) Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens Environ 205:253–275. https://doi.org/10.1016/j.rse.2017.11.026

    Article  Google Scholar 

  10. Google (2019) https://www.kaggle.com/

  11. Haas J, Ban Y (2018) Urban land cover and ecosystem service changes based on sentinel-2A MSI and Landsat TM data. IEEE J Sel Top Appl Earth Obs Remote Sens 11(2):485–497. https://doi.org/10.1109/JSTARS.2017.2786468

    Article  Google Scholar 

  12. Inglada J, Vincent A, Arias M, Tardy B, Morin D, Rodes I (2017) Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 9(1). https://doi.org/10.3390/rs9010095

  13. Isaac E, Easwarakumar KS, Isaac J (2017) Urban landcover classification from multispectral image data using optimized AdaBoosted random forests. Remote Sens Lett 8(4):350–359. https://doi.org/10.1080/2150704X.2016.1274443

    Article  Google Scholar 

  14. Jebur MN, Mohd Shafri HZ, Pradhan B, Tehrany MS (2014) Per-pixel and object-oriented classification methods for mapping urban land cover extraction using SPOT 5 imagery. Geocarto Int 29(7):792–806. https://doi.org/10.1080/10106049.2013.848944

    Article  Google Scholar 

  15. Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf 11(5):352–359. https://doi.org/10.1016/j.jag.2009.06.002

    Article  Google Scholar 

  16. Lantzanakis G, Mitraka Z, Chrysoulakis N (2020) X-SVM: an extension of C-SVM algorithm for classification of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 59:1–11. https://doi.org/10.1109/TGRS.2020.3017937

    Article  Google Scholar 

  17. Liou Y-A, Tzeng YC, Chen KS (1999) A neural-network approach to radiometric sensing of land-surface parameters. IEEE Trans Geosci Remote Sens 37(6):2718–2724. https://doi.org/10.1109/36.803419

    Article  Google Scholar 

  18. Liu K, Shi W, Zhang H (2011) A fuzzy topology-based maximum likelihood classification. ISPRS J Photogramm Remote Sens 66(1):103–114. https://doi.org/10.1016/j.isprsjprs.2010.09.007

    Article  Google Scholar 

  19. Liu Z, He C, Zhang Q, Huang Q, Yang Y (2012) Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc Urban Plan 106(1):62–72. https://doi.org/10.1016/j.landurbplan.2012.02.013

    Article  Google Scholar 

  20. Louis J, Pflug B, Main-Knorn M, Debaecker V, Mueller-Wilm U, Gascon F (2018) Integration and Assimilation of Meteorological (ECMWF) Aerosol Estimates into Sen2Cor Atmospheric Correction. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp 1894–1897

  21. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870. https://doi.org/10.1080/01431160600746456

    Article  Google Scholar 

  22. Main-Knorn M, Pflug B, Louis J, Debaecker V (2015) Calibration and validation plan for the L2A processor and products of the Sentinel-2 mission. In: Proceedings of International Symposium on Remote Sensing of Environment (ISRSE) 2015, vol 40, no W3, pp 1249–1255

  23. Mayer B, Kylling A (2005) Technical note: the libRadtran software package for radiative transfer calculations - description and examples of use. Atmos Chem Phys 5(7):1855–1877. https://doi.org/10.5194/acp-5-1855-2005

    Article  Google Scholar 

  24. Mishra VN, Prasad R, Kumar P, Gupta DK, Srivastava PK (2016) Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ Earth Sci 76(1):26. https://doi.org/10.1007/s12665-016-6341-7

    Article  Google Scholar 

  25. Naikoo MW, Rihan M, Ishtiaque M, Shahfahad (2020) Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. J Urban Manag 9(3):347–359. https://doi.org/10.1016/j.jum.2020.05.004

    Article  Google Scholar 

  26. Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57. https://doi.org/10.1016/j.rse.2014.02.015

    Article  Google Scholar 

  27. Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12:S27–S31. https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  28. Pontius RG, Millones M (2011) Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429. https://doi.org/10.1080/01431161.2011.552923

    Article  Google Scholar 

  29. Qiu C, Mou L, Schmitt M, Zhu XX (2020) Fusing multiseasonal Sentinel-2 imagery for urban land cover classification with multibranch residual convolutional neural networks. IEEE Geosci Remote Sens Lett 17(10):1787–1791. https://doi.org/10.1109/LGRS.2019.2953497

    Article  Google Scholar 

  30. Rana VK, Venkata Suryanarayana TM (2020) Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens Appl Soc Environ 19:100351. https://doi.org/10.1016/j.rsase.2020.100351

    Article  Google Scholar 

  31. Schölkopf B, Smola AJ, Bach F et al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press

  32. Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):1–9. https://doi.org/10.1371/journal.pone.0023777

    Article  Google Scholar 

  33. Spoto F, Martimort P, Drusch M (2012) Sentinel - 2: ESA’s optical high-resolution mission for GMES operational services. Eur. Sp. Agency, (Special Publ. ESA SP, vol. 707 SP, pp 25–36

  34. Spoto F et al (2012) Overview Of Sentinel-2. In: 2012 IEEE international geoscience and remote sensing symposium, Jul. 2012, pp 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195.

  35. Tran H, Tran T, Kervyn M (2015) Dynamics of land cover/land use changes in the Mekong Delta, 1973–2011: a remote sensing analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sens 7(3):2899–2925. https://doi.org/10.3390/rs70302899

    Article  Google Scholar 

  36. Vohra R, Tiwari KC (2020) Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification. Sens. Imaging, vol 21, no 1, p 17. https://doi.org/10.1007/s11220-020-00280-9.

  37. Wan B, Guo Q, Fang F, Su Y, Wang R (2015) Mapping US urban extents from MODIS data using one-class classification method. Remote Sens 7(8):10143–10163

    Article  Google Scholar 

  38. Zhang HK, Roy DP (2017) Using the 500m MODIS land cover product to derive a consistent continental scale 30m Landsat land cover classification. Remote Sens Environ 197:15–34. https://doi.org/10.1016/j.rse.2017.05.024

    Article  Google Scholar 

  39. Zhu Z, Woodcock CE, Rogan J, Kellndorfer J (2012) Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens Environ 117:72–82. https://doi.org/10.1016/j.rse.2011.07.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Soni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, P.K., Rajpal, N., Mehta, R. et al. Urban land cover and land use classification using multispectral sentinal-2 imagery. Multimed Tools Appl 81, 36853–36867 (2022). https://doi.org/10.1007/s11042-021-10991-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10991-0

Keywords