Abstract
In recent years, remote sensing data contains ample information about landcover due to the advancements in remote sensing technology. Humans can utilize this data in agriculture, forestry, disaster management, urbanization, and many more applications. The European Space Agency’s Sentinel −2 satellite delivers freely accessible multispectral remote sensing data of different high spatial resolutions, which can be used in various remote sensing fields to extract meaningful information. In this work, the multispectral imagery of 10 m spatial resolution of a densely populated urban area, obtained from sentinel-2, is classified using Support vector machine (SVM), artificial neural network (ANN) and maximum likelihood classifier (MLC). The results obtained using the classifiers SVM, ANN and MLC are compared in terms of the kappa coefficient, overall accuracy and accuracy of users and producers. An area of 14 × 14 km2 of the South-West district of Delhi (India) is chosen for this study with five urban land-cover and land-use(ULCLU) classes, namely roads, water, buildings, vegetation, and barren land, with a training sample size of 150 pixels per class. The highly complex nature (high population density, urbanization) of the study area makes the classification task challenging and appealing. All the classification methods have more than 90% accuracy, but SVM obtains the best performance with 98.05% accuracy. The work presented in this paper can support policymakers in making better decisions and extracting meaningful information about ULCLU.
Similar content being viewed by others
References
Atkinson PM, Tatnall ARL (1997) Introduction neural networks in remote sensing. Int J Remote Sens 18(4):699–709. https://doi.org/10.1080/014311697218700
Census of India (n.d.) www.census2011.co.in. Accessed 27 Sep 2020
Chadchan J, Shankar R (2012) An analysis of urban growth trends in the post-economic reforms period in India. Int J Sustain Built Environ 1(1):36–49. https://doi.org/10.1016/j.ijsbe.2012.05.001
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Craig Dobson M, Ulaby FT, Pierce LE (1995) Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote Sens Environ 51(1):199–214. https://doi.org/10.1016/0034-4257(94)00075-X
Dutta D, Rahman A, Paul SK, Kundu A (2020) Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. Ann Reg Sci 65(1):67–82. https://doi.org/10.1007/s00168-020-00974-8
earthexplorer (2020) https://earthexplorer.usgs.gov/. Accessed 27 Sep 2020
Gašparović M, Jogun T (2018) The effect of fusing Sentinel-2 bands on land-cover classification. Int J Remote Sens 39(3):822–841. https://doi.org/10.1080/01431161.2017.1392640
Goldblatt R, Stuhlmacher MF, Tellman B, Clinton N, Hanson G, Georgescu M, Wang C, Serrano-Candela F, Khandelwal AK, Cheng WH, Balling RC Jr (2018) Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens Environ 205:253–275. https://doi.org/10.1016/j.rse.2017.11.026
Google (2019) https://www.kaggle.com/
Haas J, Ban Y (2018) Urban land cover and ecosystem service changes based on sentinel-2A MSI and Landsat TM data. IEEE J Sel Top Appl Earth Obs Remote Sens 11(2):485–497. https://doi.org/10.1109/JSTARS.2017.2786468
Inglada J, Vincent A, Arias M, Tardy B, Morin D, Rodes I (2017) Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 9(1). https://doi.org/10.3390/rs9010095
Isaac E, Easwarakumar KS, Isaac J (2017) Urban landcover classification from multispectral image data using optimized AdaBoosted random forests. Remote Sens Lett 8(4):350–359. https://doi.org/10.1080/2150704X.2016.1274443
Jebur MN, Mohd Shafri HZ, Pradhan B, Tehrany MS (2014) Per-pixel and object-oriented classification methods for mapping urban land cover extraction using SPOT 5 imagery. Geocarto Int 29(7):792–806. https://doi.org/10.1080/10106049.2013.848944
Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf 11(5):352–359. https://doi.org/10.1016/j.jag.2009.06.002
Lantzanakis G, Mitraka Z, Chrysoulakis N (2020) X-SVM: an extension of C-SVM algorithm for classification of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 59:1–11. https://doi.org/10.1109/TGRS.2020.3017937
Liou Y-A, Tzeng YC, Chen KS (1999) A neural-network approach to radiometric sensing of land-surface parameters. IEEE Trans Geosci Remote Sens 37(6):2718–2724. https://doi.org/10.1109/36.803419
Liu K, Shi W, Zhang H (2011) A fuzzy topology-based maximum likelihood classification. ISPRS J Photogramm Remote Sens 66(1):103–114. https://doi.org/10.1016/j.isprsjprs.2010.09.007
Liu Z, He C, Zhang Q, Huang Q, Yang Y (2012) Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc Urban Plan 106(1):62–72. https://doi.org/10.1016/j.landurbplan.2012.02.013
Louis J, Pflug B, Main-Knorn M, Debaecker V, Mueller-Wilm U, Gascon F (2018) Integration and Assimilation of Meteorological (ECMWF) Aerosol Estimates into Sen2Cor Atmospheric Correction. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp 1894–1897
Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870. https://doi.org/10.1080/01431160600746456
Main-Knorn M, Pflug B, Louis J, Debaecker V (2015) Calibration and validation plan for the L2A processor and products of the Sentinel-2 mission. In: Proceedings of International Symposium on Remote Sensing of Environment (ISRSE) 2015, vol 40, no W3, pp 1249–1255
Mayer B, Kylling A (2005) Technical note: the libRadtran software package for radiative transfer calculations - description and examples of use. Atmos Chem Phys 5(7):1855–1877. https://doi.org/10.5194/acp-5-1855-2005
Mishra VN, Prasad R, Kumar P, Gupta DK, Srivastava PK (2016) Dual-polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ Earth Sci 76(1):26. https://doi.org/10.1007/s12665-016-6341-7
Naikoo MW, Rihan M, Ishtiaque M, Shahfahad (2020) Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. J Urban Manag 9(3):347–359. https://doi.org/10.1016/j.jum.2020.05.004
Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA (2014) Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57. https://doi.org/10.1016/j.rse.2014.02.015
Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Obs Geoinf 12:S27–S31. https://doi.org/10.1016/j.jag.2009.11.002
Pontius RG, Millones M (2011) Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens 32(15):4407–4429. https://doi.org/10.1080/01431161.2011.552923
Qiu C, Mou L, Schmitt M, Zhu XX (2020) Fusing multiseasonal Sentinel-2 imagery for urban land cover classification with multibranch residual convolutional neural networks. IEEE Geosci Remote Sens Lett 17(10):1787–1791. https://doi.org/10.1109/LGRS.2019.2953497
Rana VK, Venkata Suryanarayana TM (2020) Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens Appl Soc Environ 19:100351. https://doi.org/10.1016/j.rsase.2020.100351
Schölkopf B, Smola AJ, Bach F et al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press
Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6(8):1–9. https://doi.org/10.1371/journal.pone.0023777
Spoto F, Martimort P, Drusch M (2012) Sentinel - 2: ESA’s optical high-resolution mission for GMES operational services. Eur. Sp. Agency, (Special Publ. ESA SP, vol. 707 SP, pp 25–36
Spoto F et al (2012) Overview Of Sentinel-2. In: 2012 IEEE international geoscience and remote sensing symposium, Jul. 2012, pp 1707–1710. https://doi.org/10.1109/IGARSS.2012.6351195.
Tran H, Tran T, Kervyn M (2015) Dynamics of land cover/land use changes in the Mekong Delta, 1973–2011: a remote sensing analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sens 7(3):2899–2925. https://doi.org/10.3390/rs70302899
Vohra R, Tiwari KC (2020) Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification. Sens. Imaging, vol 21, no 1, p 17. https://doi.org/10.1007/s11220-020-00280-9.
Wan B, Guo Q, Fang F, Su Y, Wang R (2015) Mapping US urban extents from MODIS data using one-class classification method. Remote Sens 7(8):10143–10163
Zhang HK, Roy DP (2017) Using the 500m MODIS land cover product to derive a consistent continental scale 30m Landsat land cover classification. Remote Sens Environ 197:15–34. https://doi.org/10.1016/j.rse.2017.05.024
Zhu Z, Woodcock CE, Rogan J, Kellndorfer J (2012) Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens Environ 117:72–82. https://doi.org/10.1016/j.rse.2011.07.020
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Soni, P.K., Rajpal, N., Mehta, R. et al. Urban land cover and land use classification using multispectral sentinal-2 imagery. Multimed Tools Appl 81, 36853–36867 (2022). https://doi.org/10.1007/s11042-021-10991-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-021-10991-0